aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPaul Oliver <contact@pauloliver.dev>2024-02-29 03:15:03 +0100
committerPaul Oliver <contact@pauloliver.dev>2024-02-29 03:15:30 +0100
commit6fd23da97fa9700f59c61a966b4bf7d25fa46b34 (patch)
treed5fe3a8305a5f57e5b4cedc8300e951c74696cc5
initial commitHEADmaster
-rw-r--r--.gitignore1
-rw-r--r--DualMLP.cpp72
-rw-r--r--DualMLP.hpp23
-rw-r--r--FullyRN.cpp40
-rw-r--r--FullyRN.hpp17
-rw-r--r--MemCell.cpp83
-rw-r--r--MemCell.hpp26
-rw-r--r--NNUtils.cpp54
-rw-r--r--NNUtils.hpp28
-rw-r--r--NeuralNet.hpp26
-rw-r--r--NeuralNetworks.hpp11
-rw-r--r--Neuron.cpp57
-rw-r--r--Neuron.hpp22
-rw-r--r--Node.hpp21
-rw-r--r--NodeLayer.cpp75
-rw-r--r--NodeLayer.hpp30
-rw-r--r--Population.cpp95
-rw-r--r--Population.hpp30
-rw-r--r--README.md46
-rw-r--r--SimpleRN.cpp35
-rw-r--r--SimpleRN.hpp17
-rw-r--r--SingleMLP.cpp64
-rw-r--r--SingleMLP.hpp22
23 files changed, 895 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..7bc7e11
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+libNeuralNetworks.a
diff --git a/DualMLP.cpp b/DualMLP.cpp
new file mode 100644
index 0000000..3a854c0
--- /dev/null
+++ b/DualMLP.cpp
@@ -0,0 +1,72 @@
+#include "DualMLP.hpp"
+
+DualMLP::DualMLP(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed)
+: m_firstHiddenLayer (inputCount, hiddenNodeCount, nodeClass, zeroed),
+ m_secondHiddenLayer (hiddenNodeCount, hiddenNodeCount, nodeClass, zeroed),
+ m_outputLayer (hiddenNodeCount, outputCount, nodeClass, zeroed)
+{
+ m_inputCount = inputCount;
+ m_hiddenNodeCount = hiddenNodeCount;
+ m_outputCount = outputCount;
+ m_nodeClass = nodeClass;
+}
+
+void DualMLP::setChromosome(const Chromosome &chromosome)
+{
+ if (chromosome.size() != getChromosomeSize())
+ {
+ return;
+ }
+
+ auto l1 = chromosome.begin() + m_firstHiddenLayer.getChromosomeSize();
+ auto l2 = l1 + m_secondHiddenLayer.getChromosomeSize();
+
+ Chromosome chr1(chromosome.begin(), l1);
+ Chromosome chr2(l1, l2);
+ Chromosome chr3(l2, chromosome.end());
+
+ m_firstHiddenLayer.setChromosome(chr1);
+ m_secondHiddenLayer.setChromosome(chr2);
+ m_outputLayer.setChromosome(chr3);
+}
+
+Chromosome DualMLP::getChromosome() const
+{
+ Chromosome chromosome;
+
+ Chromosome chr1 = m_firstHiddenLayer.getChromosome();
+ Chromosome chr2 = m_secondHiddenLayer.getChromosome();
+ Chromosome chr3 = m_outputLayer.getChromosome();
+
+ chromosome.insert(chromosome.end(), chr1.begin(), chr1.end());
+ chromosome.insert(chromosome.end(), chr2.begin(), chr2.end());
+ chromosome.insert(chromosome.end(), chr3.begin(), chr3.end());
+
+ return chromosome;
+}
+
+unsigned DualMLP::getChromosomeSize() const
+{
+ unsigned chrSize = 0;
+ chrSize += m_firstHiddenLayer.getChromosomeSize();
+ chrSize += m_secondHiddenLayer.getChromosomeSize();
+ chrSize += m_outputLayer.getChromosomeSize();
+
+ return chrSize;
+}
+
+std::vector<float> DualMLP::io(const std::vector<float> &inputs)
+{
+ std::vector<float> response;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ response = m_firstHiddenLayer.io(inputs);
+ response = m_secondHiddenLayer.io(response);
+ response = m_outputLayer.io(response);
+
+ return response;
+}
diff --git a/DualMLP.hpp b/DualMLP.hpp
new file mode 100644
index 0000000..2c8feca
--- /dev/null
+++ b/DualMLP.hpp
@@ -0,0 +1,23 @@
+#ifndef __DUALMLP_HPP__
+#define __DUALMLP_HPP__
+
+#include "NeuralNet.hpp"
+
+class DualMLP : public NeuralNet
+{
+public:
+ DualMLP(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed = false);
+
+ void setChromosome(const Chromosome &chromosome);
+ Chromosome getChromosome() const;
+ unsigned getChromosomeSize() const;
+
+ virtual std::vector<float> io(const std::vector<float> &inputs);
+
+protected:
+ NodeLayer m_firstHiddenLayer;
+ NodeLayer m_secondHiddenLayer;
+ NodeLayer m_outputLayer;
+};
+
+#endif // __DUALMLP_HPP__
diff --git a/FullyRN.cpp b/FullyRN.cpp
new file mode 100644
index 0000000..ecc88d5
--- /dev/null
+++ b/FullyRN.cpp
@@ -0,0 +1,40 @@
+#include "FullyRN.hpp"
+
+FullyRN::FullyRN(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed)
+: DualMLP(0, 0, 0, NEURON, true)
+{
+ unsigned contextSize = inputCount + hiddenNodeCount + outputCount;
+ m_context.resize(contextSize, 0.f);
+
+ m_firstHiddenLayer = NodeLayer(inputCount + contextSize, inputCount, nodeClass, zeroed);
+ m_secondHiddenLayer = NodeLayer(contextSize, hiddenNodeCount, nodeClass, zeroed);
+ m_outputLayer = NodeLayer(contextSize, outputCount, nodeClass, zeroed);
+
+ m_inputCount = inputCount;
+ m_hiddenNodeCount = hiddenNodeCount;
+ m_outputCount = outputCount;
+ m_nodeClass = nodeClass;
+}
+
+std::vector<float> FullyRN::io(const std::vector<float> &inputs)
+{
+ std::vector<float> response;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ auto stateInput = inputs;
+ stateInput.insert(stateInput.end(), m_context.begin(), m_context.end());
+ response = m_firstHiddenLayer.io(stateInput);
+
+ auto hiddenOutput = m_secondHiddenLayer.io(m_context);
+ response.insert(response.end(), hiddenOutput.begin(), hiddenOutput.end());
+
+ auto outputOutput = m_outputLayer.io(m_context);
+ response.insert(response.end(), outputOutput.begin(), outputOutput.end());
+
+ m_context = response;
+ return outputOutput;
+}
diff --git a/FullyRN.hpp b/FullyRN.hpp
new file mode 100644
index 0000000..a114140
--- /dev/null
+++ b/FullyRN.hpp
@@ -0,0 +1,17 @@
+#ifndef __FULLYRN_HPP__
+#define __FULLYRN_HPP__
+
+#include "DualMLP.hpp"
+
+class FullyRN : public DualMLP
+{
+public:
+ FullyRN(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed = false);
+
+ std::vector<float> io(const std::vector<float> &inputs);
+
+private:
+ std::vector<float> m_context;
+};
+
+#endif // __FULLYRN_HPP__
diff --git a/MemCell.cpp b/MemCell.cpp
new file mode 100644
index 0000000..4e5b17b
--- /dev/null
+++ b/MemCell.cpp
@@ -0,0 +1,83 @@
+#include "MemCell.hpp"
+
+MemCell::MemCell(unsigned inputCount, bool zeroed)
+: m_input (inputCount, zeroed),
+ m_inputGate (inputCount + 1, zeroed),
+ m_memGate (inputCount + 1, zeroed),
+ m_outputGate(inputCount + 1, zeroed)
+{
+ m_inputCount = inputCount;
+}
+
+void MemCell::setChromosome(const Chromosome &chromosome)
+{
+ unsigned chrSize = getChromosomeSize();
+
+ if (chromosome.size() != chrSize)
+ {
+ return;
+ }
+
+ auto l1 = chromosome.begin() + m_input.getChromosomeSize();
+ auto l2 = l1 + m_inputGate.getChromosomeSize();
+ auto l3 = l2 + m_memGate.getChromosomeSize();
+
+ Chromosome chrInput(chromosome.begin(), l1);
+ Chromosome chrInputGate(l1, l2);
+ Chromosome chrMemGate(l2, l3);
+ Chromosome chrOutputGate(l3, chromosome.end());
+
+ m_input.setChromosome(chrInput);
+ m_inputGate.setChromosome(chrInputGate);
+ m_memGate.setChromosome(chrMemGate);
+ m_outputGate.setChromosome(chrOutputGate);
+}
+
+Chromosome MemCell::getChromosome() const
+{
+ Chromosome chromosome;
+
+ Chromosome chrInput = m_input.getChromosome();
+ Chromosome chrInputGate = m_inputGate.getChromosome();
+ Chromosome chrMemGate = m_memGate.getChromosome();
+ Chromosome chrOutputGate = m_outputGate.getChromosome();
+
+ chromosome.insert(chromosome.end(), chrInput.begin(), chrInput.end());
+ chromosome.insert(chromosome.end(), chrInputGate.begin(), chrInputGate.end());
+ chromosome.insert(chromosome.end(), chrMemGate.begin(), chrMemGate.end());
+ chromosome.insert(chromosome.end(), chrOutputGate.begin(), chrOutputGate.end());
+
+ return chromosome;
+}
+
+unsigned MemCell::getChromosomeSize() const
+{
+ unsigned chrSize = 0;
+
+ chrSize += m_input.getChromosomeSize();
+ chrSize += m_inputGate.getChromosomeSize();
+ chrSize += m_memGate.getChromosomeSize();
+ chrSize += m_outputGate.getChromosomeSize();
+
+ return chrSize;
+}
+
+float MemCell::io(const std::vector<float> &inputs)
+{
+ float response = 0.f;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ std::vector<float> gateInputs = inputs;
+ gateInputs.push_back(m_context);
+
+ response = m_input.io(inputs) * m_inputGate.io(gateInputs);
+ float memory = m_context * m_memGate.io(gateInputs);
+ m_context = memory + response;
+
+ response = sigmoid(m_context) * m_outputGate.io(gateInputs);
+ return response;
+}
diff --git a/MemCell.hpp b/MemCell.hpp
new file mode 100644
index 0000000..4b1a38f
--- /dev/null
+++ b/MemCell.hpp
@@ -0,0 +1,26 @@
+#ifndef __MEMCELL_HPP__
+#define __MEMCELL_HPP__
+
+#include "Neuron.hpp"
+
+class MemCell : public Node
+{
+public:
+ MemCell(unsigned inputCount, bool zeroed = false);
+
+ void setChromosome(const Chromosome &chromosome);
+ Chromosome getChromosome() const;
+ unsigned getChromosomeSize() const;
+
+ float io(const std::vector<float> &inputs);
+
+private:
+ Neuron m_input;
+ Neuron m_inputGate;
+ Neuron m_memGate;
+ Neuron m_outputGate;
+
+ float m_context = 0.f;
+};
+
+#endif // __MEMCELL_HPP__
diff --git a/NNUtils.cpp b/NNUtils.cpp
new file mode 100644
index 0000000..611768a
--- /dev/null
+++ b/NNUtils.cpp
@@ -0,0 +1,54 @@
+#include "NNUtils.hpp"
+
+std::default_random_engine rGenerator;
+
+void seedRand()
+{
+ rGenerator.seed(std::chrono::system_clock::now().time_since_epoch().count());
+}
+
+float realRand(float low, float hi)
+{
+ std::uniform_real_distribution<float> fDistributor(low, hi);
+ return fDistributor(rGenerator);
+}
+
+int intRand(int low, int hi)
+{
+ std::uniform_int_distribution<int> iDistributor(low, hi - 1);
+ return iDistributor(rGenerator);
+}
+
+float sigmoid(float input, float sensitivity)
+{
+ return 1.f / (1.f + expf(-input / sensitivity));
+}
+
+void crossover(const Chromosome &parent, const Chromosome &mother, Chromosome &child1, Chromosome &child2)
+{
+ if (parent.size() != mother.size())
+ {
+ return;
+ }
+
+ child1.clear();
+ child2.clear();
+
+ int cop = intRand(0, parent.size());
+
+ child1.insert(child1.end(), parent.begin(), parent.begin() + cop);
+ child1.insert(child1.end(), mother.begin() + cop, mother.end());
+ child2.insert(child2.end(), mother.begin(), mother.begin() + cop);
+ child2.insert(child2.end(), parent.begin() + cop, parent.end());
+}
+
+void mutate(Chromosome &chromosome, float mutationRate)
+{
+ for (auto &i : chromosome)
+ {
+ if (realRand(0.f, 1.f) < mutationRate)
+ {
+ i = realRand(-1.f, 1.f);
+ }
+ }
+}
diff --git a/NNUtils.hpp b/NNUtils.hpp
new file mode 100644
index 0000000..e2c12ba
--- /dev/null
+++ b/NNUtils.hpp
@@ -0,0 +1,28 @@
+#ifndef __NNUTILS_HPP__
+#define __NNUTILS_HPP__
+
+#include <cmath>
+#include <vector>
+#include <random>
+#include <chrono>
+#include <memory>
+
+enum NodeClass { NEURON, MEMORY_CELL };
+
+enum NeuralNetClass { SINGLE_MLP, DUAL_MLP, SIMPLE_RN, FULLY_RN };
+
+typedef std::vector<float> Chromosome;
+
+void seedRand();
+
+float realRand(float low, float hi);
+
+int intRand(int low, int hi);
+
+float sigmoid(float input, float sensitivity = 1.f);
+
+void crossover(const Chromosome &parent, const Chromosome &mother, Chromosome &child1, Chromosome &child2);
+
+void mutate(Chromosome &chromosome, float mutationRate = 0.001f);
+
+#endif // __NNUTILS_HPP__
diff --git a/NeuralNet.hpp b/NeuralNet.hpp
new file mode 100644
index 0000000..70d3e87
--- /dev/null
+++ b/NeuralNet.hpp
@@ -0,0 +1,26 @@
+#ifndef __NEURALNET_HPP__
+#define __NEURALNET_HPP__
+
+#include "NodeLayer.hpp"
+
+class NeuralNet
+{
+public:
+ virtual void setChromosome(const Chromosome &chromosome) = 0;
+ virtual Chromosome getChromosome() const = 0;
+ virtual unsigned getChromosomeSize() const = 0;
+
+ virtual std::vector<float> io(const std::vector<float> &inputs) = 0;
+
+ unsigned getInputCount() const { return m_inputCount; }
+ unsigned getHiddenNodeCount() const { return m_hiddenNodeCount; }
+ unsigned getOutputCount() const { return m_outputCount; }
+
+protected:
+ unsigned m_inputCount = 0;
+ unsigned m_hiddenNodeCount = 0;
+ unsigned m_outputCount = 0;
+ NodeClass m_nodeClass;
+};
+
+#endif // __NEURALNET_HPP__
diff --git a/NeuralNetworks.hpp b/NeuralNetworks.hpp
new file mode 100644
index 0000000..0edd503
--- /dev/null
+++ b/NeuralNetworks.hpp
@@ -0,0 +1,11 @@
+#ifndef __NEURALNETWORKS_HPP__
+#define __NEURALNETWORKS_HPP__
+
+#include "Population.hpp"
+
+#include "SingleMLP.hpp"
+#include "DualMLP.hpp"
+#include "SimpleRN.hpp"
+#include "FullyRN.hpp"
+
+#endif // __NEURALNETWORKS_HPP__
diff --git a/Neuron.cpp b/Neuron.cpp
new file mode 100644
index 0000000..647d525
--- /dev/null
+++ b/Neuron.cpp
@@ -0,0 +1,57 @@
+#include "Neuron.hpp"
+
+Neuron::Neuron(unsigned inputCount, bool zeroed)
+{
+ m_inputCount = inputCount;
+
+ while (inputCount--)
+ {
+ m_weights.push_back(zeroed ? 0.f : realRand(-1.f, 1.f));
+ }
+
+ m_bias = zeroed ? 0.f : realRand(-1.f, 1.f);
+}
+
+void Neuron::setChromosome(const Chromosome &chromosome)
+{
+ unsigned chrSize = getChromosomeSize();
+
+ if (chrSize != chromosome.size())
+ {
+ return;
+ }
+
+ m_weights = Chromosome(chromosome.begin(), chromosome.end() - 1);
+ m_bias = chromosome.back();
+}
+
+Chromosome Neuron::getChromosome() const
+{
+ Chromosome chromosome;
+
+ for (auto &i : m_weights)
+ {
+ chromosome.push_back(i);
+ }
+
+ chromosome.push_back(m_bias);
+
+ return chromosome;
+}
+
+float Neuron::io(const std::vector<float> &inputs)
+{
+ float response = 0.f;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ for (unsigned i = 0; i < m_inputCount; ++i)
+ {
+ response += inputs[i] * m_weights[i];
+ }
+
+ return sigmoid(response - m_bias);
+}
diff --git a/Neuron.hpp b/Neuron.hpp
new file mode 100644
index 0000000..f2f7269
--- /dev/null
+++ b/Neuron.hpp
@@ -0,0 +1,22 @@
+#ifndef __NEURON_HPP__
+#define __NEURON_HPP__
+
+#include "Node.hpp"
+
+class Neuron : public Node
+{
+public:
+ Neuron(unsigned inputCount, bool zeroed = false);
+
+ void setChromosome(const Chromosome &chromosome);
+ Chromosome getChromosome() const;
+ unsigned getChromosomeSize() const { return m_inputCount + 1; }
+
+ float io(const std::vector<float> &inputs);
+
+private:
+ std::vector<float> m_weights;
+ float m_bias = 0.f;
+};
+
+#endif // __NEURON_HPP__
diff --git a/Node.hpp b/Node.hpp
new file mode 100644
index 0000000..97d7f4c
--- /dev/null
+++ b/Node.hpp
@@ -0,0 +1,21 @@
+#ifndef __NODE_HPP__
+#define __NODE_HPP__
+
+#include "NNUtils.hpp"
+
+class Node
+{
+public:
+ virtual void setChromosome(const Chromosome &chromosome) = 0;
+ virtual Chromosome getChromosome() const = 0;
+ virtual unsigned getChromosomeSize() const = 0;
+
+ virtual float io(const std::vector<float> &inputs) = 0;
+
+ unsigned getInputCount() const { return m_inputCount; }
+
+protected:
+ unsigned m_inputCount = 0;
+};
+
+#endif // __NODE_HPP__
diff --git a/NodeLayer.cpp b/NodeLayer.cpp
new file mode 100644
index 0000000..b42cf11
--- /dev/null
+++ b/NodeLayer.cpp
@@ -0,0 +1,75 @@
+#include "NodeLayer.hpp"
+
+NodeLayer::NodeLayer(unsigned inputCount, unsigned nodeCount, NodeClass nodeClass, bool zeroed)
+: m_inputCount(inputCount), m_nodeCount(nodeCount), m_nodeClass(nodeClass)
+{
+ if (nodeClass == NEURON)
+ {
+ while (nodeCount--)
+ {
+ m_nodes.push_back(std::unique_ptr<Node>(new Neuron(inputCount, zeroed)));
+ }
+ }
+ else
+ {
+ while (nodeCount--)
+ {
+ m_nodes.push_back(std::unique_ptr<Node>(new MemCell(inputCount, zeroed)));
+ }
+ }
+}
+
+void NodeLayer::setChromosome(const Chromosome &chromosome)
+{
+ unsigned chrSize = getChromosomeSize();
+
+ if (chrSize != chromosome.size())
+ {
+ return;
+ }
+
+ chrSize /= m_nodeCount;
+
+ for (unsigned i = 0; i < m_nodeCount; ++i)
+ {
+ auto l1 = chromosome.begin() + i * chrSize;
+ auto l2 = l1 + chrSize;
+ Chromosome chrPart(l1, l2);
+ m_nodes[i]->setChromosome(chrPart);
+ }
+}
+
+Chromosome NodeLayer::getChromosome() const
+{
+ Chromosome chromosome;
+
+ for (auto &i : m_nodes)
+ {
+ Chromosome chrPart = i->getChromosome();
+ chromosome.insert(chromosome.end(), chrPart.begin(), chrPart.end());
+ }
+
+ return chromosome;
+}
+
+unsigned NodeLayer::getChromosomeSize() const
+{
+ return m_nodes.front()->getChromosomeSize() * m_nodeCount;
+}
+
+std::vector<float> NodeLayer::io(const std::vector<float> &inputs)
+{
+ std::vector<float> response;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ for (auto &i : m_nodes)
+ {
+ response.push_back(i->io(inputs));
+ }
+
+ return response;
+}
diff --git a/NodeLayer.hpp b/NodeLayer.hpp
new file mode 100644
index 0000000..8ff44c2
--- /dev/null
+++ b/NodeLayer.hpp
@@ -0,0 +1,30 @@
+#ifndef __NODELAYER_HPP__
+#define __NODELAYER_HPP__
+
+#include "Neuron.hpp"
+#include "MemCell.hpp"
+
+class NodeLayer
+{
+public:
+ NodeLayer(unsigned inputCount, unsigned nodeCount, NodeClass nodeClass, bool zeroed = false);
+
+ void setChromosome(const Chromosome &chromosome);
+ Chromosome getChromosome() const;
+ unsigned getChromosomeSize() const;
+
+ std::vector<float> io(const std::vector<float> &inputs);
+
+ unsigned getInputCount() const { return m_inputCount; }
+ unsigned getNodeCount() const { return m_nodeCount; }
+ NodeClass getNodeClass() const { return m_nodeClass; }
+
+private:
+ unsigned m_inputCount = 0;
+ unsigned m_nodeCount = 0;
+ NodeClass m_nodeClass;
+
+ std::vector<std::unique_ptr<Node>> m_nodes;
+};
+
+#endif // __NODELAYER_HPP__
diff --git a/Population.cpp b/Population.cpp
new file mode 100644
index 0000000..8c502b0
--- /dev/null
+++ b/Population.cpp
@@ -0,0 +1,95 @@
+#include "Population.hpp"
+
+Population::Population(unsigned popSize, unsigned eliteCount, unsigned chromosomeSize)
+: m_popSize(popSize), m_eliteCount(eliteCount), m_chromosomeSize(chromosomeSize)
+{
+ m_fitnesses.resize(m_popSize, 0.f);
+ m_chromosomes.resize(m_popSize);
+ for (auto &i : m_chromosomes)
+ {
+ i.resize(m_chromosomeSize, 0.f);
+ for (auto &j : i)
+ {
+ j = realRand(-1.f, 1.f);
+ }
+ }
+}
+
+void Population::roulleteWheel()
+{
+ std::vector<Chromosome> newGeneration;
+
+ std::vector<unsigned> eliteIndexes(m_eliteCount, 0);
+ for (auto &i : eliteIndexes)
+ {
+ for (unsigned j = 0; j < m_popSize; ++j)
+ {
+ bool picked = false;
+ for (auto &k : eliteIndexes)
+ {
+ if (k == j)
+ {
+ picked = true;
+ break;
+ }
+ }
+ if (picked)
+ {
+ continue;
+ }
+ if (m_fitnesses[j] > m_fitnesses[i])
+ {
+ i = j;
+ }
+ }
+ }
+
+ for (auto &i : eliteIndexes)
+ {
+ newGeneration.push_back(m_chromosomes[i]);
+ }
+
+ unsigned fitnessSum = 0;
+ for (auto &i : m_fitnesses)
+ {
+ fitnessSum += i;
+ }
+
+ for (unsigned i = m_eliteCount; i < m_popSize; i += 2)
+ {
+ unsigned parentIndex = 0;
+ unsigned motherIndex = 0;
+ int randomParent = intRand(0, fitnessSum);
+ int randomMother = intRand(0, fitnessSum);
+
+ while (randomParent > 0)
+ {
+ randomParent -= m_fitnesses[parentIndex];
+ ++parentIndex;
+ } --parentIndex;
+
+ while (randomMother > 0)
+ {
+ randomMother -= m_fitnesses[motherIndex];
+ ++motherIndex;
+ } --motherIndex;
+
+ Chromosome child1;
+ Chromosome child2;
+
+ crossover(m_chromosomes[parentIndex], m_chromosomes[motherIndex], child1, child2);
+ mutate(child1);
+ mutate(child2);
+
+ newGeneration.push_back(child1);
+ newGeneration.push_back(child2);
+ }
+
+ if (newGeneration.size() < m_chromosomes.size())
+ {
+ newGeneration.push_back(newGeneration.back());
+ }
+
+ m_chromosomes = newGeneration;
+ m_fitnesses = std::vector<unsigned>(m_popSize, 0);
+}
diff --git a/Population.hpp b/Population.hpp
new file mode 100644
index 0000000..075a08f
--- /dev/null
+++ b/Population.hpp
@@ -0,0 +1,30 @@
+#ifndef __POPULATION_HPP__
+#define __POPULATION_HPP__
+
+#include "NNUtils.hpp"
+
+class Population
+{
+public:
+ Population(unsigned popSize, unsigned eliteCount, unsigned chromosomeSize);
+
+ void roulleteWheel();
+
+ unsigned getPopSize() const { return m_popSize; }
+ unsigned getChromosomeSize() const { return m_chromosomeSize; }
+ unsigned getEliteCount() const { return m_eliteCount; }
+
+ void setFitness(unsigned i, unsigned fitness) { m_fitnesses[i] = fitness; }
+ Chromosome getChromosome(unsigned i) const { return m_chromosomes[i]; }
+ unsigned getFitness(unsigned i) const { return m_fitnesses[i]; }
+
+private:
+ unsigned m_popSize = 0;
+ unsigned m_eliteCount = 0;
+ unsigned m_chromosomeSize = 0;
+
+ std::vector<Chromosome> m_chromosomes;
+ std::vector<unsigned> m_fitnesses;
+};
+
+#endif // __POPULATION_HPP__
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..05a3b72
--- /dev/null
+++ b/README.md
@@ -0,0 +1,46 @@
+Neural Network library used for the Guppies project. Parameters that can be set
+by it follow:
+
+## NETWORK STRUCTURE
+Defines the main topology of the Neural Network (i.e. the way that Nodes
+connect with each other). The four possible choices (in order of
+complexity) are:
+
+### Single MultiLayer Perceptron
+A FeedForward network with 1 hidden layer. Information flows
+unidirectionally from input nodes to output nodes (and not the
+other way around).
+
+### Dual MultiLayer Perceptron
+Same as above, but with two hidden layers instead of one.
+
+### Simple Recurrent Network (Elman Network)
+This type of recurrent network has a set of "context" units that
+store the output of the (single) hidden layer and feeds it back
+to the input layer on the next time-step, giving it a kind of
+short term memory.
+
+### Fully Recurrent Network
+All Nodes in this network are connected to each other. It's the
+most complex (and processor intensive) network of the four.
+
+## NODE STRUCTURE
+Defines the structure of each network node. The two choices are:
+
+### Neuron
+Each neuron computes its outputs from a given set of inputs. Output
+equals the weighted sum of all inputs.
+
+### Memory Cell
+This kind of node is based in the Long-Short Term Memory recurrent
+network model. It contains 4 neurons, 3 of them act as "gates" that
+allow it to block input, store it and output it, thus being able to
+hold in information or "memories" for a long time span. It's the
+most complex (and processor intensive) type of node.
+
+## NODES PER HIDDEN LAYER
+Number of nodes that reside on each hidden layer. SingleMLPs, SimpleRNs and
+FullyRNs have one hidden layer. DualMLPs have two (thus, their number of
+hidden nodes is "this value" x 2). The more nodes, the more complex the
+Neural Networks of the Guppies are (and the more time it'll take to evolve
+them). \ No newline at end of file
diff --git a/SimpleRN.cpp b/SimpleRN.cpp
new file mode 100644
index 0000000..0e10c22
--- /dev/null
+++ b/SimpleRN.cpp
@@ -0,0 +1,35 @@
+#include "SimpleRN.hpp"
+
+SimpleRN::SimpleRN(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed)
+: SingleMLP(0, 0, 0, NEURON, true)
+{
+ m_context.resize(hiddenNodeCount, 0.f);
+
+ m_hiddenLayer = NodeLayer(inputCount + hiddenNodeCount, hiddenNodeCount, nodeClass, zeroed);
+ m_outputLayer = NodeLayer(hiddenNodeCount, outputCount, nodeClass, zeroed);
+
+ m_inputCount = inputCount;
+ m_hiddenNodeCount = hiddenNodeCount;
+ m_outputCount = outputCount;
+ m_nodeClass = nodeClass;
+}
+
+std::vector<float> SimpleRN::io(const std::vector<float> &inputs)
+{
+ std::vector<float> response;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ response.insert(response.end(), inputs.begin(), inputs.end());
+ response.insert(response.end(), m_context.begin(), m_context.end());
+
+ response = m_hiddenLayer.io(response);
+
+ m_context = response;
+ response = m_outputLayer.io(response);
+
+ return response;
+}
diff --git a/SimpleRN.hpp b/SimpleRN.hpp
new file mode 100644
index 0000000..6d0cc2c
--- /dev/null
+++ b/SimpleRN.hpp
@@ -0,0 +1,17 @@
+#ifndef __SIMPLERN_HPP__
+#define __SIMPLERN_HPP__
+
+#include "SingleMLP.hpp"
+
+class SimpleRN : public SingleMLP
+{
+public:
+ SimpleRN(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed = false);
+
+ std::vector<float> io(const std::vector<float> &inputs);
+
+private:
+ std::vector<float> m_context;
+};
+
+#endif // __SIMPLERN_HPP__
diff --git a/SingleMLP.cpp b/SingleMLP.cpp
new file mode 100644
index 0000000..8cc90c3
--- /dev/null
+++ b/SingleMLP.cpp
@@ -0,0 +1,64 @@
+#include "SingleMLP.hpp"
+
+SingleMLP::SingleMLP(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed)
+: m_hiddenLayer(inputCount, hiddenNodeCount, nodeClass, zeroed),
+ m_outputLayer(hiddenNodeCount, outputCount, nodeClass, zeroed)
+{
+ m_inputCount = inputCount;
+ m_hiddenNodeCount = hiddenNodeCount;
+ m_outputCount = outputCount;
+ m_nodeClass = nodeClass;
+}
+
+void SingleMLP::setChromosome(const Chromosome &chromosome)
+{
+ if (chromosome.size() != getChromosomeSize())
+ {
+ return;
+ }
+
+ auto l1 = chromosome.begin() + m_hiddenLayer.getChromosomeSize();
+
+ Chromosome chr1(chromosome.begin(), l1);
+ Chromosome chr2(l1, chromosome.end());
+
+ m_hiddenLayer.setChromosome(chr1);
+ m_outputLayer.setChromosome(chr2);
+}
+
+Chromosome SingleMLP::getChromosome() const
+{
+ Chromosome chromosome;
+
+ Chromosome chr1 = m_hiddenLayer.getChromosome();
+ Chromosome chr2 = m_outputLayer.getChromosome();
+
+ chromosome.insert(chromosome.end(), chr1.begin(), chr1.end());
+ chromosome.insert(chromosome.end(), chr2.begin(), chr2.end());
+
+ return chromosome;
+}
+
+unsigned SingleMLP::getChromosomeSize() const
+{
+ unsigned chrSize = 0;
+ chrSize += m_hiddenLayer.getChromosomeSize();
+ chrSize += m_outputLayer.getChromosomeSize();
+
+ return chrSize;
+}
+
+std::vector<float> SingleMLP::io(const std::vector<float> &inputs)
+{
+ std::vector<float> response;
+
+ if (inputs.size() != m_inputCount)
+ {
+ return response;
+ }
+
+ response = m_hiddenLayer.io(inputs);
+ response = m_outputLayer.io(response);
+
+ return response;
+}
diff --git a/SingleMLP.hpp b/SingleMLP.hpp
new file mode 100644
index 0000000..79395f8
--- /dev/null
+++ b/SingleMLP.hpp
@@ -0,0 +1,22 @@
+#ifndef __SINGLEMLP_HPP__
+#define __SINGLEMLP_HPP__
+
+#include "NeuralNet.hpp"
+
+class SingleMLP : public NeuralNet
+{
+public:
+ SingleMLP(unsigned inputCount, unsigned hiddenNodeCount, unsigned outputCount, NodeClass nodeClass, bool zeroed = false);
+
+ void setChromosome(const Chromosome &chromosome);
+ Chromosome getChromosome() const;
+ unsigned getChromosomeSize() const;
+
+ virtual std::vector<float> io(const std::vector<float> &inputs);
+
+protected:
+ NodeLayer m_hiddenLayer;
+ NodeLayer m_outputLayer;
+};
+
+#endif // __SINGLEMLP_HPP__