diff options
Diffstat (limited to 'src/NeuralNet.cpp')
-rw-r--r-- | src/NeuralNet.cpp | 294 |
1 files changed, 294 insertions, 0 deletions
diff --git a/src/NeuralNet.cpp b/src/NeuralNet.cpp new file mode 100644 index 0000000..abed262 --- /dev/null +++ b/src/NeuralNet.cpp @@ -0,0 +1,294 @@ +#include <cmath> +#include <algorithm> +#include <HyperNeat/Cppn.hpp> +#include <HyperNeat/NeuralNet.hpp> +#include <HyperNeat/Utils/Map.hpp> +#include <HyperNeat/Utils/Set.hpp> +#include <HyperNeat/NeuralNetPrms.hpp> +#include <HyperNeat/Utils/Function.hpp> +#include <HyperNeat/NodeSearchPrms.hpp> + +using namespace std; +using namespace hyperneat; + +void +NeuralNet::create(Cppn& cppn, const NeuralNetPrms& nnPrms) +{ + class TempNeuronSynapse { + public: + TempNeuronSynapse() = default; + TempNeuronSynapse(double weight, Point neuronSource) + : _weight(weight), _neuronSource(neuronSource) + {} + + double _weight = 0.0; + Point _neuronSource; + }; + + class TempNeuron { + public: + bool _isIncluded = false; + double _bias = 0.0; + Vector<TempNeuronSynapse> _neuronSynapses; + }; + + _inputs.reserve(nnPrms._inputMap.size()); + _outputs.reserve(nnPrms._outputMap.size()); + + NodeSearchPrms nsPrms(0, 2, 3, 4); + nsPrms.importFrom(nnPrms); + cppn.inputAt(5) = 1.0; + + Map<Point, TempNeuron> tempNeurons; + + auto findConnections = [&](const Point& source, size_t x1, size_t y1, size_t x2, size_t y2, size_t d, + bool checkExist, Function<void(double, const Point&)> storeConn) { + cppn.inputAt(x1) = source._x; + cppn.inputAt(y1) = source._y; + cppn.inputAt(x2) = 0.0; + cppn.inputAt(y2) = 0.0; + cppn.inputAt(d) = 0.0; + + ValueMap newConnections; + cppn.findNodesIn2DSection(newConnections, nsPrms, source); + + for (auto& i : newConnections) { + if (checkExist && !tempNeurons.count(i)) { + continue; + } + + if (fabs(i._value) > 0.2) { + storeConn((i._value + (i._value > 0 ? -0.2 : 0.2)) * 3.75, i); + } + } + }; + + { + Set<Point> neuronSet1; + Set<Point> neuronSet2; + Set<Point>* previousNeurons = &neuronSet1; + Set<Point>* nextNeurons = &neuronSet2; + + for (auto& i : nnPrms._inputMap) { + tempNeurons[i]; + previousNeurons->insert(i); + } + + for (size_t i = 0; i < nnPrms._iterations && !previousNeurons->empty(); ++i) { + Map<Point, TempNeuron> newNeurons; + + for (auto& j : *previousNeurons) { + findConnections(j, 0, 1, 2, 3, 4, false, [&](double weight, const Point& target) { + if (tempNeurons.count(target)) { + auto& synapses = tempNeurons[target]._neuronSynapses; + synapses.emplace_back(weight, j); + } else { + auto& synapses = newNeurons[target]._neuronSynapses; + synapses.emplace_back(weight, j); + nextNeurons->insert(target); + } + }); + } + + previousNeurons->clear(); + swap(nextNeurons, previousNeurons); + tempNeurons.insert(newNeurons.begin(), newNeurons.end()); + } + } + + nsPrms._x = 0; + nsPrms._y = 1; + + { + Vector<TempNeuron*> inclusionSet1; + Vector<TempNeuron*> inclusionSet2; + Vector<TempNeuron*>* crntInclusions = &inclusionSet1; + Vector<TempNeuron*>* nextInclusions = &inclusionSet2; + + for (auto& i : nnPrms._outputMap) { + tempNeurons[i]._isIncluded = true; + nextInclusions->push_back(&tempNeurons[i]); + + findConnections(i, 2, 3, 0, 1, 4, true, [&](double weight, const Point& target) { + auto& synapses = tempNeurons[i]._neuronSynapses; + synapses.emplace_back(weight, target); + }); + } + + while (!nextInclusions->empty()) { + crntInclusions->clear(); + swap(crntInclusions, nextInclusions); + + for (auto& i : *crntInclusions) { + for (auto& j : i->_neuronSynapses) { + auto& sourceNeuron = tempNeurons.at(j._neuronSource); + + if (!sourceNeuron._isIncluded) { + nextInclusions->push_back(&sourceNeuron); + sourceNeuron._isIncluded = true; + } + } + } + } + } + + for (auto& i : nnPrms._inputMap) { + tempNeurons[i]._isIncluded = true; + } + + cppn.inputAt(2) = 0.0; + cppn.inputAt(3) = 0.0; + cppn.inputAt(4) = 0.0; + + for (auto i = tempNeurons.begin(), end = tempNeurons.end(); i != end;) { + if (i->second._isIncluded) { + cppn.inputAt(0) = i->first._x; + cppn.inputAt(1) = i->first._y; + cppn.inputAt(4) = i->first.distance(Point()); + cppn.cycle(); + i->second._bias = cppn.outputAt(1) * 3.0; + ++i; + } else { + i = tempNeurons.erase(i); + } + } + + _neurons.resize(tempNeurons.size()); + + { + auto nIter = _neurons.begin(); + + for (auto& i : tempNeurons) { + nIter->_bias = i.second._bias; + nIter->_position = i.first; + auto& crntNrnSyns = nIter->_synapses; + auto& neuronSynapses = i.second._neuronSynapses; + crntNrnSyns.reserve(neuronSynapses.size()); + + for (auto& j : neuronSynapses) { + auto src = tempNeurons.find(j._neuronSource); + size_t sIdx = distance(tempNeurons.begin(), src); + crntNrnSyns.emplace_back(&_neurons[sIdx], j._weight); + } + + ++nIter; + } + } + + auto relateIO = [&](Vector<double*>& ptrVec, const Vector<Point>& map, Neuron::Type type) { + for (auto& i : map) { + auto neuron = tempNeurons.find(i); + size_t nIdx = distance(tempNeurons.begin(), neuron); + _neurons[nIdx]._type = type; + ptrVec.push_back(&_neurons[nIdx]._output); + } + }; + + relateIO(_inputs, nnPrms._inputMap, Neuron::Type::INPUT); + relateIO(_outputs, nnPrms._outputMap, Neuron::Type::OUTPUT); +} + +void +NeuralNet::clear() +{ + _inputs.clear(); + _outputs.clear(); + _neurons.clear(); +} + +size_t +NeuralNet::getInputsCount() const +{ + return _inputs.size(); +} + +size_t +NeuralNet::getOutputsCount() const +{ + return _outputs.size(); +} + +size_t +NeuralNet::getNeuronsCount() const +{ + return _neurons.size(); +} + +double +NeuralNet::getAverageActivation() const +{ + double totalActivation = 0.0; + + for (auto& i : _neurons) { + totalActivation += i._output; + } + + return totalActivation / static_cast<double>(_neurons.size()); +} + +double& +NeuralNet::inputAt(size_t i) +{ + return *_inputs[i]; +} + +double +NeuralNet::outputAt(size_t i) const +{ + return *_outputs[i]; +} + +const Vector<double*>& +NeuralNet::getInputs() const +{ + return _inputs; +} + +const Vector<double*>& +NeuralNet::getOutputs() const +{ + return _outputs; +} + +const Vector<NeuralNet::Neuron>& +NeuralNet::getNeurons() const +{ + return _neurons; +} + +void +NeuralNet::cycle() +{ + for (auto& i : _neurons) { + i.appendInput(); + } + + for (auto& i : _neurons) { + i.flushOutput(); + } +} + +NeuralNet::Neuron::Neuron(const Point& position, Type type, double bias) + : _position(position), _type(type), _bias(bias) +{} + +void +NeuralNet::Neuron::appendInput() +{ + for (auto& i : _synapses) { + _storedInput += *i._input * i._weight; + } + + _storedInput += _bias; +} + +void +NeuralNet::Neuron::flushOutput() +{ + _output = 1.0 / (1.0 + exp(-_storedInput * 4.9)); + _storedInput = 0.0; +} + +NeuralNet::Neuron::Synapse::Synapse(Neuron* inputNeuron, double weight) + : _input(&inputNeuron->_output), _neuron(inputNeuron), _weight(weight) +{} |