#include #include #include #include #include "types.h" #include "getter.h" #include "instset.h" #include "memory.h" #include "evolver.h" #include "common.h" #include "process.h" static boolean g_is_init; static uint32 g_count; static uint32 g_capacity; static uint32 g_first; static uint32 g_last; static uint32 g_instructions_executed; static Process *g_procs; void _sal_proc_init(void) { /* Initialize process module to its initial state. We initialize the reaper queue with a capacity of 1. 'First' and 'last' organism pointers are initialized to (uint32)-1 (to indicate they point to no organism, as no organism exists yet). */ assert(!g_is_init); g_is_init = TRUE; g_capacity = 1; g_first = UINT32_MAX; g_last = UINT32_MAX; g_procs = calloc(g_capacity, sizeof(Process)); assert(g_procs); } void _sal_proc_quit(void) { /* Reset process module back to zero; free up the process queue. */ assert(g_is_init); free(g_procs); g_is_init = FALSE; g_count = 0; g_capacity = 0; g_first = 0; g_last = 0; g_instructions_executed = 0; g_procs = NULL; } void _sal_proc_load_from(FILE *file) { /* Load process module state from a binary file. */ assert(!g_is_init); assert(file); fread(&g_is_init, sizeof(boolean), 1, file); fread(&g_count, sizeof(uint32), 1, file); fread(&g_capacity, sizeof(uint32), 1, file); fread(&g_first, sizeof(uint32), 1, file); fread(&g_last, sizeof(uint32), 1, file); fread(&g_instructions_executed, sizeof(uint32), 1, file); g_procs = calloc(g_capacity, sizeof(Process)); assert(g_procs); fread(g_procs, sizeof(Process), g_capacity, file); } void _sal_proc_save_into(FILE *file) { /* Save process module state to a binary file. */ assert(g_is_init); assert(file); fwrite(&g_is_init, sizeof(boolean), 1, file); fwrite(&g_count, sizeof(uint32), 1, file); fwrite(&g_capacity, sizeof(uint32), 1, file); fwrite(&g_first, sizeof(uint32), 1, file); fwrite(&g_last, sizeof(uint32), 1, file); fwrite(&g_instructions_executed, sizeof(uint32), 1, file); fwrite(g_procs, sizeof(Process), g_capacity, file); } /* Getter methods for the process module. */ UINT32_GETTER(proc, count) UINT32_GETTER(proc, capacity) UINT32_GETTER(proc, first) UINT32_GETTER(proc, last) UINT32_GETTER(proc, instructions_executed) boolean sal_proc_is_free(uint32 proc_id) { /* In Salis, the reaper queue is implemented as a circular queue. Thus, at any given time, a process ID (which actually denotes a process 'address' or, more correctly, a process 'container address') might contain a living process or be empty. This function checks for the 'living' state of a given process ID. */ assert(g_is_init); assert(proc_id < g_capacity); if (!g_procs[proc_id].mb1s) { /* When running in debug mode, we make sure that non-living processes are completely set to zero, as this is the expected state. */ #ifndef NDEBUG Process dummy_proc; memset(&dummy_proc, 0, sizeof(Process)); assert(!memcmp(&dummy_proc, &g_procs[proc_id], sizeof(Process))); #endif return TRUE; } return FALSE; } Process sal_proc_get_proc(uint32 proc_id) { /* Get a **copy** (not a reference) of the process with the given ID. Note, this might be a non-living process. */ assert(g_is_init); assert(proc_id < g_capacity); return g_procs[proc_id]; } void sal_proc_get_proc_data(uint32 proc_id, uint32_p buffer) { /* Get a **copy** (not a reference) of the process with the given ID (represented as a string of 32 bit integers) written into the given buffer. The buffer must be pre-allocated to a large enough size (i.e. malloc(sizeof(Process))). Note, copied process might be in a non-living state. */ assert(g_is_init); assert(proc_id < g_capacity); assert(buffer); memcpy(buffer, &g_procs[proc_id], sizeof(Process)); } static boolean block_is_free_and_valid(uint32 address, uint32 size) { /* Iterate all addresses in the given memory block and check that they lie within memory bounds and have the ALLOCATED flag unset. */ uint32 offset; for (offset = 0; offset < size; offset++) { uint32 off_addr = offset + address; if (!sal_mem_is_address_valid(off_addr)) return FALSE; if (sal_mem_is_allocated(off_addr)) return FALSE; /* Deallocated addresses must have the BLOCK_START flag unset as well. */ assert(!sal_mem_is_block_start(off_addr)); } return TRUE; } static void realloc_queue(uint32 queue_lock) { /* Reallocate reaper queue into a new circular queue with double the capacity. This function gets called whenever the reaper queue fills up with new organisms. A queue_lock parameter may be provided, which 'centers' the reallocation on a given process ID. This means that, after reallocating the queue, the process with that ID will keep still have the same ID on the new queue. */ uint32 new_capacity; Process *new_queue; uint32 fwrd_idx; uint32 back_idx; assert(g_is_init); assert(g_count == g_capacity); assert(queue_lock < g_capacity); new_capacity = g_capacity * 2; new_queue = calloc(new_capacity, sizeof(Process)); assert(new_queue); fwrd_idx = queue_lock; back_idx = (queue_lock - 1) % new_capacity; /* Copy all organisms that lie forward from queue lock. */ while (TRUE) { uint32 old_idx = fwrd_idx % g_capacity; memcpy(&new_queue[fwrd_idx], &g_procs[old_idx], sizeof(Process)); if (old_idx == g_last) { g_last = fwrd_idx; break; } else { fwrd_idx++; } } /* Copy all organisms that lie backwards from queue lock, making sure to loop around the queue (with modulo '%') whenever the process index goes below zero. */ if (queue_lock != g_first) { while (TRUE) { uint32 old_idx = back_idx % g_capacity; memcpy(&new_queue[back_idx], &g_procs[old_idx], sizeof(Process)); if (old_idx == g_first) { g_first = back_idx; break; } else { back_idx--; back_idx %= new_capacity; } } } /* Free old reaper queue and re-link global pointer to new queue. */ free(g_procs); g_capacity = new_capacity; g_procs = new_queue; } static uint32 get_new_proc_from_queue(uint32 queue_lock) { /* Retrieve an unoccupied process ID from the reaper queue. This function gets called whenever a new organism is generated (born). */ assert(g_is_init); /* If reaper queue is full, reallocate to double its current size. */ if (g_count == g_capacity) { realloc_queue(queue_lock); } g_count++; if (g_count == 1) { g_first = 0; g_last = 0; return 0; } else { g_last++; g_last %= g_capacity; return g_last; } } static void proc_create( uint32 address, uint32 size, uint32 queue_lock, boolean set_ip, boolean allocate ) { /* Give birth to a new process! We must specify the address and size of the new organism. */ uint32 pidx; assert(g_is_init); assert(sal_mem_is_address_valid(address)); assert(sal_mem_is_address_valid(address + size - 1)); /* When organisms are generated manually (by an user), we must set the IP flag on the first byte of its owned memory. When organisms replicate by themselves, we don't set the flag, as it gets set at the end of the module cycle. Take a look at the '_sal_proc_cycle()' function for more info. */ if (set_ip) { _sal_mem_set_ip(address); } /* When organisms are generated manually (by an user), we must explicitly allocate its entire memory block. When organisms replicate by themselves, we assume they have already allocated the child's memory, so we don't need to do it here. */ if (allocate) { uint32 offset; assert(block_is_free_and_valid(address, size)); _sal_mem_set_block_start(address); for (offset = 0; offset < size; offset++) { uint32 off_addr = offset + address; _sal_mem_set_allocated(off_addr); } } /* Get a new process ID for the child process. Also, set initial state of the child process data structure. */ pidx = get_new_proc_from_queue(queue_lock); g_procs[pidx].mb1a = address; g_procs[pidx].mb1s = size; g_procs[pidx].ip = address; g_procs[pidx].sp = address; } void sal_proc_create(uint32 address, uint32 mb1s) { /* API function to create a new process. Memory address and size of new process must be provided. */ assert(g_is_init); assert(block_is_free_and_valid(address, mb1s)); proc_create(address, mb1s, 0, TRUE, TRUE); } static void free_memory_block(uint32 address, uint32 size) { /* Deallocate a memory block. This includes unsetting the BLOCK_START flag on the first byte. */ uint32 offset; assert(sal_mem_is_address_valid(address)); assert(sal_mem_is_address_valid(address + size - 1)); assert(sal_mem_is_block_start(address)); assert(size); _sal_mem_unset_block_start(address); for (offset = 0; offset < size; offset++) { /* Iterate all addresses in block and unset the ALLOCATED flag in them. */ uint32 off_addr = offset + address; assert(sal_mem_is_allocated(off_addr)); assert(!sal_mem_is_block_start(off_addr)); _sal_mem_unset_allocated(off_addr); } } static void free_memory_owned_by(uint32 pidx) { /* Free memory specifically owned by the process with the given ID. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); free_memory_block(g_procs[pidx].mb1a, g_procs[pidx].mb1s); if (g_procs[pidx].mb2s) { /* If process owns a child memory block, free it as well. */ free_memory_block(g_procs[pidx].mb2a, g_procs[pidx].mb2s); } } static void proc_kill(boolean reset_ips) { /* Kill process on bottom of reaper queue (the oldest process). */ assert(g_is_init); assert(g_count); assert(g_first != UINT32_MAX); assert(g_last != UINT32_MAX); assert(!sal_proc_is_free(g_first)); /* When called manually by an user, we must clear and reset the IP flags of all processes in order to preserve module validity. */ if (reset_ips) { _sal_mem_unset_ip(g_procs[g_first].ip); } /* Free up owned memory and reset process data structure back to zero. */ free_memory_owned_by(g_first); memset(&g_procs[g_first], 0, sizeof(Process)); g_count--; if (g_first == g_last) { g_first = UINT32_MAX; g_last = UINT32_MAX; } else { g_first++; g_first %= g_capacity; } /* Reset IP flags of all living processes. We use openmp to do this faster. */ if (reset_ips) { uint32 pidx; #pragma omp parallel for for (pidx = 0; pidx < g_capacity; pidx++) { if (!sal_proc_is_free(pidx)) { _sal_mem_set_ip(g_procs[pidx].ip); } } } } void sal_proc_kill(void) { /* API function to kill a process. Make sure that at least one process is alive, or 'assert()' will fail. */ assert(g_is_init); assert(g_count); assert(g_first != UINT32_MAX); assert(g_last != UINT32_MAX); assert(!sal_proc_is_free(g_first)); proc_kill(TRUE); } static boolean block_is_allocated(uint32 address, uint32 size) { /* Assert that a given memory block is fully allocated. */ uint32 offset; assert(g_is_init); for (offset = 0; offset < size; offset++) { uint32 off_addr = offset + address; assert(sal_mem_is_address_valid(off_addr)); assert(sal_mem_is_allocated(off_addr)); } return TRUE; } static boolean proc_is_valid(uint32 pidx) { /* Assert that the process with the given ID is in a valid state. This means that all of its owned memory must be allocated and that the proper flags are set in place. IP and SP must be located in valid addresses. */ assert(g_is_init); assert(pidx < g_capacity); if (!sal_proc_is_free(pidx)) { assert(sal_mem_is_address_valid(g_procs[pidx].ip)); assert(sal_mem_is_address_valid(g_procs[pidx].sp)); assert(sal_mem_is_block_start(g_procs[pidx].mb1a)); assert(sal_mem_is_ip(g_procs[pidx].ip)); assert(block_is_allocated(g_procs[pidx].mb1a, g_procs[pidx].mb1s)); if (g_procs[pidx].mb2s) { assert(sal_mem_is_block_start(g_procs[pidx].mb2a)); assert(block_is_allocated(g_procs[pidx].mb2a, g_procs[pidx].mb2s)); } } return TRUE; } static boolean module_is_valid(void) { /* Check for validity of process module. This function only gets called when Salis is running in debug mode. It makes Salis **very** slow in comparison to when running optimized, but it is also **very** useful for debugging! */ uint32 pidx; uint32 alloc_count = 0; uint32 block_count = 0; assert(g_is_init); assert(g_count >= sal_mem_get_ip_count()); /* Check that each individual process is in a valid state. We can do this in a multi-threaded way. */ #pragma omp parallel for for (pidx = 0; pidx < g_capacity; pidx++) { assert(proc_is_valid(pidx)); } /* Iterate all processes, counting their memory blocks and adding up their memory block sizes. At the end, we compare the sums to the flag counters of the memory module. */ for (pidx = 0; pidx < g_capacity; pidx++) { if (!sal_proc_is_free(pidx)) { alloc_count += g_procs[pidx].mb1s; block_count++; if (g_procs[pidx].mb2s) { assert(g_procs[pidx].mb1a != g_procs[pidx].mb2a); alloc_count += g_procs[pidx].mb2s; block_count++; } } } assert(block_count == sal_mem_get_block_start_count()); assert(alloc_count == sal_mem_get_allocated_count()); return TRUE; } static void toggle_ip_flag(void (*toggler)(uint32 address)) { /* At the start of each process module cycle, all memory addresses with the IP flag set get their IP flag turned off. Once all processes finish executing, the IP flags are turned on again on all addresses pointed by 'g_procs[pidx].ip'. I've found this is the easiest way to preserve correctness, given that more than one process can have their IPs pointed to the same address. This function simply iterates through all processes, setting the IP flag on or off on the address pointed to by their IP. */ uint32 pidx; assert(g_is_init); for (pidx = 0; pidx < g_capacity; pidx++) { if (!sal_proc_is_free(pidx)) { toggler(g_procs[pidx].ip); } } } static void on_fault(uint32 pidx) { /* Organisms get punished whenever they execute an invalid instruction (commit a 'fault') by having the halt one simulation cycle. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); g_procs[pidx].punish = 1; } static void increment_ip(uint32 pidx) { /* After executing each instruction, increment the given organism's IP to the next valid address. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (sal_mem_is_address_valid(g_procs[pidx].ip + 1)) { g_procs[pidx].ip++; } /* Wherever IP goes, SP follows. :P */ g_procs[pidx].sp = g_procs[pidx].ip; } static boolean are_templates_complements(uint32 source, uint32 complement) { /* Check whether 2 templates are complements. Templates are introduced in Salis-2.0 and they function in the same way as templates in the original Tierra. They consist of string of NOP0 and NOP1 instructions. We say that templates are complements whenever one is a 'negation' of another (i.e. they are reverse copies of each other). So, on the following example, the top template would be the complement of the bottom template. >>> NOP0 - NOP1 - NOP1 >>> NOP1 - NOP0 - NOP0 This function looks into 2 given addresses in memory and checks whether there are complementing templates on those addresses. */ assert(g_is_init); assert(sal_mem_is_address_valid(source)); assert(sal_mem_is_address_valid(complement)); assert(sal_is_template(sal_mem_get_inst(source))); while ( sal_mem_is_address_valid(source) && sal_is_template(sal_mem_get_inst(source)) ) { /* Iterate address by address, checking complementarity on each consecutive byte pair. */ uint8 inst_src; uint8 inst_comp; /* If complement head moves to an invalid address, complementarity fails. */ if (!sal_mem_is_address_valid(complement)) { return FALSE; } inst_src = sal_mem_get_inst(source); inst_comp = sal_mem_get_inst(complement); assert(inst_src == NOP0 || inst_src == NOP1); if (inst_src == NOP0 && inst_comp != NOP1) { return FALSE; } if (inst_src == NOP1 && inst_comp != NOP0) { return FALSE; } source++; complement++; } /* If we get to the end of a template in the source head, and target has been complementary all the way through, we consider these blocks of memory 'complements'. */ return TRUE; } static void increment_sp(uint32 pidx, boolean forward) { /* Increment or decrement SP to the next valid address. This function gets called by organisms during jumps, searches, etc. (i.e. whenever the seeker pointer gets sent on a 'mission'). */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (forward && sal_mem_is_address_valid(g_procs[pidx].sp + 1)) { g_procs[pidx].sp++; } if (!forward && sal_mem_is_address_valid(g_procs[pidx].sp - 1)) { g_procs[pidx].sp--; } } static boolean jump_seek(uint32 pidx, boolean forward) { /* Search (via the seeker pointer) for template to jump into. This gets called by organisms each cycle during a JMP instruction. Only when a valid template is found, will this function return TRUE. Otherwise it will return FALSE, signaling the calling process that a template has not yet been found. */ uint32 next_addr; uint8 next_inst; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); next_addr = g_procs[pidx].ip + 1; /* This function causes a 'fault' when there is no template right in front of the caller organism's instruction pointer. */ if (!sal_mem_is_address_valid(next_addr)) { on_fault(pidx); increment_ip(pidx); return FALSE; } next_inst = sal_mem_get_inst(next_addr); if (!sal_is_template(next_inst)) { on_fault(pidx); increment_ip(pidx); return FALSE; } /* Check for complementarity. Increment seeker pointer if template has not been found yet. */ if (are_templates_complements(next_addr, g_procs[pidx].sp)) { return TRUE; } increment_sp(pidx, forward); return FALSE; } static void jump(uint32 pidx) { /* This gets called when an organism has finally found a template to jump into (see function above). Only when in debug mode, we make sure that the entire jump operation has been performed in a valid way. */ #ifndef NDEBUG uint32 next_addr; uint8 next_inst; uint8 sp_inst; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); next_addr = g_procs[pidx].ip + 1; assert(sal_mem_is_address_valid(next_addr)); next_inst = sal_mem_get_inst(next_addr); sp_inst = sal_mem_get_inst(g_procs[pidx].sp); assert(sal_is_template(next_inst)); assert(sal_is_template(sp_inst)); assert(are_templates_complements(next_addr, g_procs[pidx].sp)); #endif g_procs[pidx].ip = g_procs[pidx].sp; } static boolean addr_seek(uint32 pidx, boolean forward) { /* Search (via the seeker pointer) for template address in memory. This gets called by organisms each cycle during a ADR instruction. Only when a valid template is found, will this function return TRUE. Otherwise it will return FALSE, signaling the calling process that a template has not yet been found. */ uint32 next1_addr; uint32 next2_addr; uint8 next1_inst; uint8 next2_inst; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); next1_addr = g_procs[pidx].ip + 1; next2_addr = g_procs[pidx].ip + 2; /* This function causes a 'fault' when there is no register modifier right in front of the caller organism's instruction pointer, and a template just after that. */ if ( !sal_mem_is_address_valid(next1_addr) || !sal_mem_is_address_valid(next2_addr) ) { on_fault(pidx); increment_ip(pidx); return FALSE; } next1_inst = sal_mem_get_inst(next1_addr); next2_inst = sal_mem_get_inst(next2_addr); if ( !sal_is_mod(next1_inst) || !sal_is_template(next2_inst) ) { on_fault(pidx); increment_ip(pidx); return FALSE; } /* Check for complementarity. Increment seeker pointer if template has not been found yet. */ if (are_templates_complements(next2_addr, g_procs[pidx].sp)) { return TRUE; } increment_sp(pidx, forward); return FALSE; } static boolean get_register_pointers( uint32 pidx, uint32_p *regs, uint32 reg_count ) { /* This function is used to get pointers to a calling organism registers. Specifically, registers returned are those that will be used when executing the caller organism's current instruction. */ uint32 ridx; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); assert(regs); assert(reg_count); assert(reg_count < 4); /* Iterate 'reg_count' number of instructions forward from the IP, noting down all found register modifiers. If less than 'reg_count' modifiers are found, this function returns FALSE (triggering a 'fault'). */ for (ridx = 0; ridx < reg_count; ridx++) { uint32 mod_addr = g_procs[pidx].ip + 1 + ridx; if ( !sal_mem_is_address_valid(mod_addr) || !sal_is_mod(sal_mem_get_inst(mod_addr)) ) { return FALSE; } switch (sal_mem_get_inst(mod_addr)) { case MODA: regs[ridx] = &g_procs[pidx].rax; break; case MODB: regs[ridx] = &g_procs[pidx].rbx; break; case MODC: regs[ridx] = &g_procs[pidx].rcx; break; case MODD: regs[ridx] = &g_procs[pidx].rdx; break; } } return TRUE; } static void addr(uint32 pidx) { /* This gets called when an organism has finally found a template and is ready to store its address. Only when in debug mode, we make sure that the entire search operation has been performed in a valid way. */ uint32_p reg; #ifndef NDEBUG uint32 next2_addr; uint8 next2_inst; uint8 sp_inst; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); next2_addr = g_procs[pidx].ip + 2; assert(sal_mem_is_address_valid(next2_addr)); next2_inst = sal_mem_get_inst(next2_addr); sp_inst = sal_mem_get_inst(g_procs[pidx].sp); assert(sal_is_template(next2_inst)); assert(sal_is_template(sp_inst)); assert(are_templates_complements(next2_addr, g_procs[pidx].sp)); #endif /* Store address of complement into the given register. */ if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } *reg = g_procs[pidx].sp; increment_ip(pidx); } static void free_child_block_of(uint32 pidx) { /* Free only the 'child' memory block (mb2) of the caller organism. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); assert(g_procs[pidx].mb2s); free_memory_block(g_procs[pidx].mb2a, g_procs[pidx].mb2s); g_procs[pidx].mb2a = 0; g_procs[pidx].mb2s = 0; } static void alloc(uint32 pidx, boolean forward) { /* Allocate a 'child' memory block of size stored in the first given register, and save its address into the second given register. This function is the basis of Salisian reproduction. It's a fairly complicated function (as the seeker pointer must function in a procedural way), so it's divided into a series of steps, documented below. */ uint32_p regs[2]; uint32 block_size; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); /* For this function to work, we need at least two register modifiers. Then, we check for all possible error conditions. If any error conditions are found, the instruction faults and returns. */ if (!get_register_pointers(pidx, regs, 2)) { on_fault(pidx); increment_ip(pidx); return; } block_size = *regs[0]; /* ERROR 1: requested child block is of size zero. */ if (!block_size) { on_fault(pidx); increment_ip(pidx); return; } /* ERROR 2: seeker pointer not adjacent to existing child block. */ if (g_procs[pidx].mb2s) { uint32 exp_addr; if (forward) { exp_addr = g_procs[pidx].mb2a + g_procs[pidx].mb2s; } else { exp_addr = g_procs[pidx].mb2a - 1; } if (g_procs[pidx].sp != exp_addr) { on_fault(pidx); increment_ip(pidx); return; } } /* No errors were detected. We thus handle all correct conditions. * CONDITION 1: allocation was successful. */ if (g_procs[pidx].mb2s == block_size) { increment_ip(pidx); *regs[1] = g_procs[pidx].mb2a; return; } /* CONDITION 2: seeker pointer has collided with allocated space. We free child memory block and just continue searching. */ if (sal_mem_is_allocated(g_procs[pidx].sp)) { if (g_procs[pidx].mb2s) { free_child_block_of(pidx); } increment_sp(pidx, forward); return; } /* CONDITION 3: no collision detected; enlarge child memory block and increment seeker pointer. Also, correct position of BLOCK_START bit flag. */ _sal_mem_set_allocated(g_procs[pidx].sp); if (!g_procs[pidx].mb2s) { g_procs[pidx].mb2a = g_procs[pidx].sp; _sal_mem_set_block_start(g_procs[pidx].sp); } else if (!forward) { _sal_mem_unset_block_start(g_procs[pidx].mb2a); g_procs[pidx].mb2a = g_procs[pidx].sp; _sal_mem_set_block_start(g_procs[pidx].mb2a); } g_procs[pidx].mb2s++; increment_sp(pidx, forward); } static void swap(uint32 pidx) { /* Swap parent and child memory blocks. This function is the basis of Salisian metabolism. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (g_procs[pidx].mb2s) { uint32 addr_temp = g_procs[pidx].mb1a; uint32 size_temp = g_procs[pidx].mb1s; g_procs[pidx].mb1a = g_procs[pidx].mb2a; g_procs[pidx].mb1s = g_procs[pidx].mb2s; g_procs[pidx].mb2a = addr_temp; g_procs[pidx].mb2s = size_temp; } else { on_fault(pidx); } increment_ip(pidx); } static void split(uint32 pidx) { /* Split child memory block into a new organism. A new baby is born. :-) */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (g_procs[pidx].mb2s) { proc_create( g_procs[pidx].mb2a, g_procs[pidx].mb2s, pidx, FALSE, FALSE ); g_procs[pidx].mb2a = 0; g_procs[pidx].mb2s = 0; } else { on_fault(pidx); } increment_ip(pidx); } static void one_reg_op(uint32 pidx, uint8 inst) { /* Here we group all 1-register operations. These include incrementing, decrementing, placing zero or one on a register, and the negation operation. */ uint32_p reg; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); assert(sal_is_inst(inst)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } switch (inst) { case INCN: (*reg)++; break; case DECN: (*reg)--; break; case ZERO: (*reg) = 0; break; case UNIT: (*reg) = 1; break; case NOTN: (*reg) = !(*reg); break; default: assert(FALSE); } increment_ip(pidx); } static void if_not_zero(uint32 pidx) { /* Conditional operator. Like in most programming languages, this instruction is needed to allow organism execution to branch into different execution streams. */ uint32_p reg; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } if (!(*reg)) { increment_ip(pidx); } increment_ip(pidx); increment_ip(pidx); } static void three_reg_op(uint32 pidx, uint8 inst) { /* Here we group all 3-register arithmetic operations. These include addition, subtraction, multiplication and division. */ uint32_p regs[3]; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); assert(sal_is_inst(inst)); if (!get_register_pointers(pidx, regs, 3)) { on_fault(pidx); increment_ip(pidx); return; } switch (inst) { case SUMN: *regs[0] = *regs[1] + *regs[2]; break; case SUBN: *regs[0] = *regs[1] - *regs[2]; break; case MULN: *regs[0] = *regs[1] * *regs[2]; break; case DIVN: /* Division by 0 is not allowed and causes a fault. */ if (!(*regs[2])) { on_fault(pidx); increment_ip(pidx); return; } *regs[0] = *regs[1] / *regs[2]; break; default: assert(FALSE); } increment_ip(pidx); } static void load(uint32 pidx) { /* Load an instruction from a given address into a specified register. This is used by organisms during their reproduction cycle. */ uint32_p regs[2]; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if ( !get_register_pointers(pidx, regs, 2) || !sal_mem_is_address_valid(*regs[0]) ) { on_fault(pidx); increment_ip(pidx); return; } if (g_procs[pidx].sp < *regs[0]) { increment_sp(pidx, TRUE); } else if (g_procs[pidx].sp > *regs[0]) { increment_sp(pidx, FALSE); } else { *regs[1] = sal_mem_get_inst(*regs[0]); increment_ip(pidx); } } static boolean is_writeable_by(uint32 pidx, uint32 address) { /* Check whether an organisms has writing rights on a specified address. Any organism may write to any valid address that is either self owned or not allocated. */ assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); assert(sal_mem_is_address_valid(address)); if (!sal_mem_is_allocated(address)) { return TRUE; } else { uint32 lo1 = g_procs[pidx].mb1a; uint32 lo2 = g_procs[pidx].mb2a; uint32 hi1 = lo1 + g_procs[pidx].mb1s; uint32 hi2 = lo2 + g_procs[pidx].mb2s; return ( (address >= lo1 && address < hi1) || (address >= lo2 && address < hi2) ); } } static void write(uint32 pidx) { /* Write instruction on a given register into a specified address. This is used by organisms during their reproduction cycle. */ uint32_p regs[2]; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if ( !get_register_pointers(pidx, regs, 2) || !sal_mem_is_address_valid(*regs[0]) || !sal_is_inst(*regs[1]) ) { on_fault(pidx); increment_ip(pidx); return; } if (g_procs[pidx].sp < *regs[0]) { increment_sp(pidx, TRUE); } else if (g_procs[pidx].sp > *regs[0]) { increment_sp(pidx, FALSE); } else if (is_writeable_by(pidx, *regs[0])) { sal_mem_set_inst(*regs[0], *regs[1]); increment_ip(pidx); } else { on_fault(pidx); increment_ip(pidx); } } static void send(uint32 pidx) { /* Send instruction on given register into the common pipe. */ uint32_p reg; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } if (!sal_is_inst(*reg)) { on_fault(pidx); increment_ip(pidx); return; } _sal_comm_send((uint8)(*reg)); increment_ip(pidx); } static void receive(uint32 pidx) { /* Receive a single instruction from the common pipe and store it into a specified register. In case the common pipe is empty, it will return the NOP0 instruction. */ uint32_p reg; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } *reg = _sal_comm_receive(); assert(sal_is_inst(*reg)); increment_ip(pidx); } static void push(uint32 pidx) { /* Push value on register into the stack. This is useful as a secondary memory resource. */ uint32_p reg; uint32 sidx; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } for (sidx = 7; sidx; sidx--) { g_procs[pidx].stack[sidx] = g_procs[pidx].stack[sidx - 1]; } g_procs[pidx].stack[0] = *reg; increment_ip(pidx); } static void pop(uint32 pidx) { /* Pop value from the stack into a given register. */ uint32_p reg; uint32 sidx; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); if (!get_register_pointers(pidx, ®, 1)) { on_fault(pidx); increment_ip(pidx); return; } *reg = g_procs[pidx].stack[0]; for (sidx = 1; sidx < 8; sidx++) { g_procs[pidx].stack[sidx - 1] = g_procs[pidx].stack[sidx]; } g_procs[pidx].stack[7] = 0; increment_ip(pidx); } static boolean eat_seek(uint32 pidx, boolean forward) { /* Search (via the seeker pointer) for an identical copy of the memory stream right in front of the calling organism's IP. This function gets called by organisms each cycle during an EAT instruction. Only when a valid copy is found, this function will return TRUE. */ uint32 next_addr; uint8 next_inst; uint8 sp_inst; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); next_addr = g_procs[pidx].ip + 1; if (!sal_mem_is_address_valid(next_addr)) { on_fault(pidx); increment_ip(pidx); return FALSE; } if (g_procs[pidx].sp == next_addr) { increment_sp(pidx, forward); return FALSE; } next_inst = sal_mem_get_inst(next_addr); sp_inst = sal_mem_get_inst(g_procs[pidx].sp); if (next_inst == sp_inst) { return TRUE; } increment_sp(pidx, forward); return FALSE; } static void eat(uint32 pidx) { /* Salisian organisms may 'eat' information. They eat by searching for 'copies' of the code in front of their IPs during the EAT instruction. When a valid copy is found, an organism gets rewarded by setting their 'reward' field to the length of the measured copy. Each cycle, organisms execute 'reward' number of instructions plus one, thus, eating a larger stream produces a larger advantage for an organism. However, whenever an organism eats, the detected copy of the source code gets destroyed (randomized). The main idea of the EAT instruction is to turn 'information' into a valuable resource in Salis. */ uint32 source; uint32 target; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); source = g_procs[pidx].ip + 1; target = g_procs[pidx].sp; assert(sal_mem_is_address_valid(source)); assert(sal_mem_get_inst(source) == sal_mem_get_inst(target)); g_procs[pidx].reward = 0; while ( sal_mem_is_address_valid(source) && sal_mem_is_address_valid(target) && sal_mem_get_inst(source) == sal_mem_get_inst(target) ) { g_procs[pidx].reward++; _sal_evo_randomize_at(target); source++; target++; } increment_ip(pidx); } static void proc_cycle(uint32 pidx) { /* Cycle a process once. During each process cycle, several things may happen. For example, if a process is being punished (for committing a fault), it will have to wait until the next simulation cycle to be able to execute. Non-punished organisms execute at least one instruction per simulation cycle. If they are being rewarded, they execute one, plus the number on their 'reward' field, number of instructions each cycle. */ uint32 cycles; assert(g_is_init); assert(pidx < g_capacity); assert(!sal_proc_is_free(pidx)); /* Organism is being punished. Clear its 'punish' field and return without executing. */ if (g_procs[pidx].punish) { g_procs[pidx].punish = 0; return; } /* Execute one instruction per number of 'reward' points awarded to this organism. Switch case associates each instruction to its corresponding instruction handler. Process module keeps track of the total number of instructions executed (by all organisms) per simulation cycle. */ for (cycles = 0; cycles < g_procs[pidx].reward + 1; cycles++) { uint8 inst = sal_mem_get_inst(g_procs[pidx].ip); g_instructions_executed++; switch (inst) { case JMPB: if (jump_seek(pidx, FALSE)) jump(pidx); break; case JMPF: if (jump_seek(pidx, TRUE)) jump(pidx); break; case ADRB: if (addr_seek(pidx, FALSE)) addr(pidx); break; case ADRF: if (addr_seek(pidx, TRUE)) addr(pidx); break; case MALB: alloc(pidx, FALSE); break; case MALF: alloc(pidx, TRUE); break; case SWAP: swap(pidx); break; case SPLT: split(pidx); break; case INCN: case DECN: case ZERO: case UNIT: case NOTN: one_reg_op(pidx, inst); break; case IFNZ: if_not_zero(pidx); break; case SUMN: case SUBN: case MULN: case DIVN: three_reg_op(pidx, inst); break; case LOAD: load(pidx); break; case WRTE: write(pidx); break; case SEND: send(pidx); break; case RECV: receive(pidx); break; case PSHN: push(pidx); break; case POPN: pop(pidx); break; case EATB: if (eat_seek(pidx, FALSE)) eat(pidx); break; case EATF: if (eat_seek(pidx, TRUE)) eat(pidx); break; default: increment_ip(pidx); } } } void _sal_proc_cycle(void) { /* The process module cycle consists of a series of steps, which are needed to preserve overall correctness. */ assert(g_is_init); assert(module_is_valid()); g_instructions_executed = 0; /* Iterate through all organisms in the reaper queue. First organism to execute is the one pointed to by 'g_last' (the one on top of the queue). Last one to execute is 'g_first'. We go around the circular queue, making sure to modulo (%) around when iterator goes below zero. */ if (g_count) { uint32 pidx = g_last; /* Turn off all IP flags in memory and cycle 'g_last'. Then, continue with all other organisms until we reach 'g_first'. */ toggle_ip_flag(_sal_mem_unset_ip); assert(!sal_mem_get_ip_count()); proc_cycle(pidx); while (pidx != g_first) { pidx--; pidx %= g_capacity; proc_cycle(pidx); } /* Kill oldest processes whenever memory gets filled over capacity. */ while (sal_mem_get_allocated_count() > sal_mem_get_capacity()) { proc_kill(FALSE); } /* Finally, turn IP flags back on. Keep in mind that IP flags exist for visualization purposes only. They are actually not really needed. */ toggle_ip_flag(_sal_mem_set_ip); } }