aboutsummaryrefslogtreecommitdiff
path: root/plugins/CppnExplorer/src
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/CppnExplorer/src')
-rw-r--r--plugins/CppnExplorer/src/CppnExplorer.cpp549
1 files changed, 549 insertions, 0 deletions
diff --git a/plugins/CppnExplorer/src/CppnExplorer.cpp b/plugins/CppnExplorer/src/CppnExplorer.cpp
new file mode 100644
index 0000000..555922a
--- /dev/null
+++ b/plugins/CppnExplorer/src/CppnExplorer.cpp
@@ -0,0 +1,549 @@
+#include <CppnExplorer.hpp>
+#include <SFML/Window/Event.hpp>
+#include <HyperNeat/Utils/Point.hpp>
+
+using namespace sf;
+using namespace hyperneat;
+
+CppnExplorer::CppnExplorer()
+{
+ _fieldSprite.setOrigin(1.0f, 1.0f);
+ _fieldSprite.setPosition(0.0f, 0.0f);
+ _fieldSprite.setTexture(&_fieldTexture);
+ _fieldSprite.setSize(Vector2f(2.0f, 2.0f));
+ _fieldImage.create(RESOLUTION, RESOLUTION);
+}
+
+CppnExplorer::~CppnExplorer()
+{
+ shutdown();
+}
+
+void
+CppnExplorer::run(const Genome& genome, const NeuralNetPrms* nnPrms, RenderTarget* target)
+{
+ shutdown();
+ _target = target;
+ _genome = genome;
+
+ _cppn.clear();
+ _cppn.create(_genome);
+
+ if (nnPrms) {
+ _withNeuralNet = true;
+ _nnPrms = *nnPrms;
+ _neuralNetGenerator = Thread(&CppnExplorer::neuralNetGenerator, this);
+ }
+
+ if (!_target) {
+ _windowOpen = true;
+ _target = &_window;
+ _windowHandler = Thread(&CppnExplorer::windowHandler, this);
+ }
+
+ _fieldGenerator = Thread(&CppnExplorer::fieldGenerator, this);
+}
+
+void
+CppnExplorer::shutdown()
+{
+ if (_neuralNetGenerator.joinable()) {
+ _neuralNetGenerator.join();
+ }
+
+ if (_windowHandler.joinable()) {
+ _windowOpen = false;
+ _windowHandler.join();
+ }
+
+ _neurons.clear();
+ _withNeuralNet = false;
+ _neuralNetReady = false;
+ _windowOpen = false;
+ _target = nullptr;
+}
+
+void
+CppnExplorer::draw()
+{
+ _target->clear({8, 8, 16});
+
+ if (_neuralNetReady) {
+ for (auto& i : _neurons) {
+ _target->draw(i._synapses, BlendAdd);
+ }
+
+ for (auto& i : _neurons) {
+ _target->draw(i._nucleus, BlendAdd);
+ }
+ }
+
+ if (_windowOpen) {
+ _window.display();
+ }
+}
+
+void
+CppnExplorer::windowHandler()
+{
+ ContextSettings settings(0, 0, 8);
+ String title("Cppn Explorer");
+ View view({-1.0f, -1.0f, 2.0f, 2.0f});
+ VideoMode videoMode(RESOLUTION, RESOLUTION);
+ Uint32 style(Style::Titlebar | Style::Close);
+
+ _window.create(videoMode, title, style, settings);
+ _window.setVerticalSyncEnabled(true);
+ _window.setView(view);
+
+ while (_windowOpen) {
+ eventHandler();
+ draw();
+ }
+}
+
+void
+CppnExplorer::eventHandler()
+{
+ Event event;
+
+ while (_window.pollEvent(event)) {
+ switch (event.type) {
+ case Event::Closed:
+ _windowOpen = false;
+ break;
+
+ default:;
+ }
+ }
+}
+
+void
+CppnExplorer::neuralNetGenerator()
+{
+ _neuralNet.clear();
+ _neuralNet.create(_cppn, _nnPrms);
+
+ _neurons.reserve(_neuralNet.getNeurons().size());
+
+ for (auto& i : _neuralNet.getNeurons()) {
+ _neurons.emplace_back(i);
+ }
+
+ _neuralNetReady = true;
+}
+
+void
+CppnExplorer::fieldGenerator()
+{
+
+}
+
+CppnExplorer::Neuron::Neuron(const NeuralNet::Neuron& refNeuron)
+{
+ _nucleus.setPosition(refNeuron._position._x, refNeuron._position._y);
+ _nucleus.setOrigin(_nucleus.getRadius(), _nucleus.getRadius());
+
+ Color nColor = (refNeuron._bias > 0.0 ? Color::White : Color::Red);
+ nColor.a = static_cast<Uint8>(fabs((refNeuron._bias / 3.0) * 112.0) + 16.0);
+ _nucleus.setFillColor(nColor);
+
+ switch (refNeuron._type) {
+ case NeuralNet::Neuron::Type::INPUT:
+ _nucleus.setOutlineThickness(4.0f * PIXEL_SIZE);
+ _nucleus.setOutlineColor({255, 255, 255, nColor.a});
+ break;
+
+ case NeuralNet::Neuron::Type::OUTPUT:
+ _nucleus.setOutlineThickness(4.0f * PIXEL_SIZE);
+ _nucleus.setOutlineColor({255, 0, 0, nColor.a});
+ break;
+
+ default:;
+ }
+
+ for (auto& i : refNeuron._synapses) {
+ auto iNeuron = *i._neuron;
+ Color sColor = (i._weight > 0.0 ? Color::White : Color::Red);
+ sColor.a = static_cast<Uint8>(fabs((i._weight / 3.0) * 112.0) + 16.0);
+ Vector2f iPos = {static_cast<float>(iNeuron._position._x), static_cast<float>(iNeuron._position._y)};
+ Vector2f tPos = {static_cast<float>(refNeuron._position._x), static_cast<float>(refNeuron._position._y)};
+
+ _synapses.append({iPos, sColor});
+ _synapses.append({tPos, sColor});
+ }
+}
+
+// void
+// CppnExplorer::run(const Genome& genome, const NeuralNetPrms& nnPrms)
+// {
+// shutdown();
+
+// _genome = genome;
+// _nnPrms = nnPrms;
+
+// _cppn.create(_genome);
+// _neuralNet.create(_cppn, _nnPrms);
+
+// {
+// float gridStep = 2.0f / 16.0f;
+// Color gridClr = _uiColor;
+// gridClr.a = 64;
+
+// for (float i = -1.0f; i <= 1.0f; i += gridStep) {
+// _grid.append({{ -1.0f, i }, gridClr });
+// _grid.append({{ 1.0f, i }, gridClr });
+// _grid.append({{ i, -1.0f }, gridClr });
+// _grid.append({{ i, 1.0f }, gridClr });
+// }
+// }
+
+// _executor = Thread([&]() {
+// _running = true;
+
+// {
+// VideoMode videoMode(RESOLUTION, RESOLUTION);
+// String title("Cppn Explorer");
+// Uint32 style(Style::Titlebar | Style::Close);
+// ContextSettings settings(0, 0, 8);
+// View view(FloatRect(-1.0f, -1.0f, 2.0f, 2.0f));
+
+// _window.create(videoMode, title, style, settings);
+// _window.setVerticalSyncEnabled(true);
+// _window.setView(view);
+// }
+
+// _cppn.inputAt(5) = 1.0;
+
+// _valueImage.create(RESOLUTION, RESOLUTION);
+// _biasImage.create(RESOLUTION, RESOLUTION);
+// print(&WEIGHTS);
+// print(&BIAS);
+
+// _valueSprite.setTexture(&_valueTexture);
+// _valueSprite.setSize(Vector2f(2.0f, 2.0f));
+// _valueSprite.setOrigin(1.0f, 1.0f);
+// _valueSprite.setPosition(0.0f, 0.0f);
+
+// _biasSprite.setTexture(&_biasTexture);
+// _biasSprite.setSize(Vector2f(2.0f, 2.0f));
+// _biasSprite.setOrigin(1.0f, 1.0f);
+// _biasSprite.setPosition(0.0f, 0.0f);
+
+// _cursorH.setFillColor(_uiColor);
+// _cursorV.setFillColor(_uiColor);
+// _cursorH.setOrigin(_cursorH.getSize() / 2.0f);
+// _cursorV.setOrigin(_cursorV.getSize() / 2.0f);
+// _cursorH.setOutlineThickness(PIXEL);
+// _cursorV.setOutlineThickness(PIXEL);
+// _cursorH.setOutlineColor({ 128, 128, 128 });
+// _cursorV.setOutlineColor({ 128, 128, 128 });
+
+// _neurons.reserve(_neuralNet.getNeuronsCount());
+
+// for (auto& i : _neuralNet.getNeurons()) {
+// _neurons.emplace_back();
+// createNeuron(_neurons.back(), i);
+// }
+
+// while (_running) {
+// Event event;
+
+// while (_window.pollEvent(event)) {
+// switch (event.type) {
+// case Event::KeyPressed:
+// switch (event.key.code) {
+// case Keyboard::B:
+// _showBias = !_showBias;
+// break;
+
+// case Keyboard::C:
+// placeCursorAt({ 0.0f, 0.0f });
+// print(_field);
+// break;
+
+// case Keyboard::F:
+// _field == &WEIGHTS ? ++_field : --_field;
+// print(_field);
+// break;
+
+// case Keyboard::V:
+// _showField = !_showField;
+// break;
+
+// case Keyboard::N:
+// _showNeurons = !_showNeurons;
+// break;
+
+// case Keyboard::G:
+// _showGrid = !_showGrid;
+// break;
+
+// default:;
+// }
+
+// break;
+
+// case Event::MouseButtonPressed:
+// if (event.mouseButton.button == Mouse::Left) {
+// placeCursorAt(_window.mapPixelToCoords(Mouse::getPosition(_window)));
+// print(_field);
+// }
+
+// break;
+
+// case Event::Closed:
+// _running = false;
+// break;
+
+// default:;
+// }
+// }
+
+// _window.clear({ 8, 8, 16 });
+
+// if (_showField) {
+// if (_showBias) {
+// _window.draw(_biasSprite);
+// } else {
+// _window.draw(_valueSprite);
+// }
+// }
+
+// if (_showGrid) {
+// _window.draw(_grid, { BlendMode::BlendAdd });
+// }
+
+// if (_showNeurons) {
+// for (auto& i : _neurons) {
+// _window.draw(i._synapses);
+// }
+
+// for (auto& i : _neurons) {
+// if (i._type != Neuron::Type::HIDDEN) {
+// continue;
+// }
+
+// _window.draw(i._body);
+// _window.draw(i._nucleus);
+// }
+
+// for (auto& i : _neurons) {
+// if (i._type == Neuron::Type::HIDDEN) {
+// continue;
+// }
+
+// _window.draw(i._body);
+// _window.draw(i._nucleus);
+// }
+// }
+
+// _window.draw(_cursorH);
+// _window.draw(_cursorV);
+
+// _window.display();
+// }
+// });
+// }
+
+// void
+// CppnExplorer::shutdown()
+// {
+// if (_executor.joinable()) {
+// _running = false;
+// _executor.join();
+// }
+
+// this->~CppnExplorer();
+// new (this) CppnExplorer();
+// }
+
+// void
+// CppnExplorer::print(const Color* field)
+// {
+// size_t out = 0;
+// double* x1 = nullptr;
+// double* y1 = nullptr;
+// double* x2 = nullptr;
+// double* y2 = nullptr;
+// Image* image = nullptr;
+// Texture* texture = nullptr;
+
+// if (field == &WEIGHTS) {
+// x1 = &_cppn.inputAt(0);
+// y1 = &_cppn.inputAt(1);
+// x2 = &_cppn.inputAt(2);
+// y2 = &_cppn.inputAt(3);
+// } else {
+// x1 = &_cppn.inputAt(2);
+// y1 = &_cppn.inputAt(3);
+// x2 = &_cppn.inputAt(0);
+// y2 = &_cppn.inputAt(1);
+// }
+
+// *x1 = _cursorPos.x;
+// *y1 = _cursorPos.y;
+
+// if (field == &BIAS) {
+// out = 1;
+// image = &_biasImage;
+// texture = &_biasTexture;
+// } else {
+// image = &_valueImage;
+// texture = &_valueTexture;
+// }
+
+// double half = static_cast<double>(RESOLUTION / 2);
+
+// for (unsigned y = 0; y < RESOLUTION; ++y) {
+// for (unsigned x = 0; x < RESOLUTION; ++x) {
+// *x2 = (static_cast<double>(x) - half) / half;
+// *y2 = (static_cast<double>(y) - half) / half;
+// _cppn.inputAt(4) = Point(*x1, *y1).distance(Point(*x2, *y2));
+// _cppn.cycle();
+
+// auto multColor = [](const Color& base, double factor) {
+// Color result;
+
+// result.r = static_cast<Uint8>(static_cast<double>(base.r) * factor);
+// result.g = static_cast<Uint8>(static_cast<double>(base.g) * factor);
+// result.b = static_cast<Uint8>(static_cast<double>(base.b) * factor);
+
+// return result;
+// };
+
+// if (_cppn.outputAt(out) > 0) {
+// image->setPixel(x, y, multColor(Color::White, _cppn.outputAt(out)));
+// } else {
+// image->setPixel(x, y, multColor(*field, fabs(_cppn.outputAt(out))));
+// }
+// }
+// }
+
+// texture->loadFromImage(*image);
+// }
+
+// void
+// CppnExplorer::placeCursorAt(const Vector2f& newPos)
+// {
+// _cursorPos = newPos;
+// _cursorH.setPosition(_cursorPos);
+// _cursorV.setPosition(_cursorPos);
+// }
+
+// void
+// CppnExplorer::createNeuron(Neuron& repNeuron, const NeuralNet::Neuron& srcNeuron)
+// {
+// repNeuron._body.setOutlineThickness(PIXEL * 2.0f);
+// repNeuron._nucleus.setOutlineThickness(PIXEL * 2.0f);
+
+// float radius = 0.0f;
+// Color inputColor = BIAS;
+// Color hiddenColor = INV_WEIGHTS;
+// Color outputColor = WEIGHTS;
+
+// inputColor.a = 128;
+// hiddenColor.a = 128;
+// outputColor.a = 128;
+
+// switch (srcNeuron._type) {
+// case NeuralNet::Neuron::Type::INPUT:
+// repNeuron._type = Neuron::Type::INPUT;
+// repNeuron._body.setOutlineColor(inputColor);
+// repNeuron._body.setFillColor({ 0, 0, 0, 200 });
+// radius = PIXEL * 24.0f;
+// break;
+
+// case NeuralNet::Neuron::Type::HIDDEN:
+// repNeuron._type = Neuron::Type::HIDDEN;
+// repNeuron._body.setOutlineColor(hiddenColor);
+// repNeuron._body.setFillColor({ 0, 0, 0, 200 });
+
+// {
+// float level = 1.0f;
+// for (; srcNeuron._position._x * level != floor(srcNeuron._position._x * level); level *= 2.0f);
+// radius = 1.0f / (level * 4.0f);
+
+// if (radius > PIXEL * 16.0f) {
+// radius = PIXEL * 16.0f;
+// }
+// }
+
+// break;
+
+// case NeuralNet::Neuron::Type::OUTPUT:
+// repNeuron._type = Neuron::Type::OUTPUT;
+// repNeuron._body.setOutlineColor(outputColor);
+// repNeuron._body.setFillColor({ 0, 0, 0, 200 });
+// radius = PIXEL * 24.0f;
+// break;
+// }
+
+// repNeuron._body.setRadius(radius);
+// repNeuron._body.setOrigin(radius, radius);
+// repNeuron._body.setPosition(srcNeuron._position._x, srcNeuron._position._y);
+
+// repNeuron._nucleus.setRadius(radius / 2.0f);
+// repNeuron._nucleus.setOrigin(radius / 2.0f, radius / 2.0f);
+// repNeuron._nucleus.setPosition(srcNeuron._position._x, srcNeuron._position._y);
+// repNeuron._nucleus.setOutlineColor(repNeuron._body.getOutlineColor());
+
+// double multInt = static_cast<Uint8>(fabs(srcNeuron._bias / 3.0) * 255.0);
+// Color colorMult(multInt, multInt, multInt, 128);
+
+// if (srcNeuron._bias > 0) {
+// repNeuron._nucleus.setFillColor(Color::White * colorMult);
+// } else {
+// repNeuron._nucleus.setFillColor(BIAS * colorMult);
+// }
+
+// Color synColor = WEIGHTS;
+
+// for (auto& i : srcNeuron._synapses) {
+// for (auto& j : _neuralNet.getNeurons()) {
+// if (&j._output == i._input) {
+// Uint8 weight = static_cast<Uint8>(i._weight * 20.0);
+// Vector2f srcPos(j._position._x, j._position._y);
+
+// if (i._input == &srcNeuron._output) {
+// Color selfSynColor;
+
+// if (i._weight > 0.0) {
+// selfSynColor = Color(255, 255, 255, 20 + weight);
+// } else {
+// selfSynColor = synColor;
+// }
+
+// float rad2 = repNeuron._body.getRadius() * 2.0f;
+// Vector2f p1 = repNeuron._body.getPosition() + Vector2f(-rad2, -rad2);
+// Vector2f p2 = repNeuron._body.getPosition() + Vector2f(-rad2, rad2);
+// Vector2f p3 = repNeuron._body.getPosition() + Vector2f( rad2, rad2);
+// Vector2f p4 = repNeuron._body.getPosition() + Vector2f( rad2, -rad2);
+
+// repNeuron._synapses.append({ p1, selfSynColor });
+// repNeuron._synapses.append({ p2, selfSynColor });
+
+// repNeuron._synapses.append({ p2, selfSynColor });
+// repNeuron._synapses.append({ p3, selfSynColor });
+
+// repNeuron._synapses.append({ p3, selfSynColor });
+// repNeuron._synapses.append({ p4, selfSynColor });
+
+// repNeuron._synapses.append({ p4, selfSynColor });
+// repNeuron._synapses.append({ p1, selfSynColor });
+// } else {
+// repNeuron._synapses.append({ repNeuron._body.getPosition(), Color::Black });
+
+// if (i._weight > 0.0) {
+// repNeuron._synapses.append({{ srcPos }, Color(255, 255, 255, 20 + weight) });
+// } else {
+// synColor.a = 20 + weight;
+// repNeuron._synapses.append({{ srcPos }, synColor });
+// }
+// }
+
+// break;
+// }
+// }
+// }
+// }