diff options
| -rw-r--r-- | .gitignore | 8 | ||||
| -rw-r--r-- | Makefile | 29 | ||||
| -rw-r--r-- | README.md | 52 | ||||
| -rw-r--r-- | bin/common/.keep | 0 | ||||
| -rw-r--r-- | bin/genomes/.keep | 0 | ||||
| -rw-r--r-- | bin/genomes/86.anc | 1 | ||||
| -rw-r--r-- | bin/handler.py | 403 | ||||
| -rw-r--r-- | bin/lib/.keep | 0 | ||||
| -rw-r--r-- | bin/printer.py | 833 | ||||
| -rwxr-xr-x | bin/salis.py | 346 | ||||
| -rw-r--r-- | bin/sims/.keep | 0 | ||||
| -rw-r--r-- | bin/sims/auto/.keep | 0 | ||||
| -rw-r--r-- | bin/world.py | 277 | ||||
| -rw-r--r-- | build/.keep | 0 | ||||
| -rw-r--r-- | include/common.h | 19 | ||||
| -rw-r--r-- | include/evolver.h | 38 | ||||
| -rw-r--r-- | include/getter.h | 20 | ||||
| -rw-r--r-- | include/instset.h | 71 | ||||
| -rw-r--r-- | include/memory.h | 134 | ||||
| -rw-r--r-- | include/process.h | 97 | ||||
| -rw-r--r-- | include/salis.h | 67 | ||||
| -rw-r--r-- | include/types.h | 45 | ||||
| -rw-r--r-- | src/common.c | 72 | ||||
| -rw-r--r-- | src/evolver.c | 132 | ||||
| -rw-r--r-- | src/instset.c | 39 | ||||
| -rw-r--r-- | src/memory.c | 325 | ||||
| -rw-r--r-- | src/process.c | 1488 | ||||
| -rw-r--r-- | src/salis.c | 109 | 
28 files changed, 4605 insertions, 0 deletions
| diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..ee01acd --- /dev/null +++ b/.gitignore @@ -0,0 +1,8 @@ +bin/__pycache__/* +bin/common/pipe +bin/error.log +bin/lib/libsalis.so +bin/sims/*.sim +bin/sims/auto/*.auto +build/*.d +build/*.o diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..156a068 --- /dev/null +++ b/Makefile @@ -0,0 +1,29 @@ +CC := gcc
 +LIB := bin/lib/libsalis.so
 +SOURCES := $(wildcard src/*.c)
 +OBJECTS := $(patsubst src/%.c,build/%.o,$(SOURCES))
 +DEPS := $(patsubst %.o,%.d,$(OBJECTS))
 +LFLAGS := -shared
 +
 +# uncomment for debug
 +# OFLAGS := -ggdb
 +
 +# uncomment for release
 +OFLAGS := -O3 -DNDEBUG -Wno-unused-function -Wno-unused-result \
 +	-Wno-unused-variable
 +
 +CFLAGS := -Iinclude -c $(OFLAGS) -MMD -Wall -Wextra -std=c89 -fPIC -fopenmp \
 +	-DSALIS_API="" -DSALIS_INST="" -DSALIS_PROC_ELEMENT="" -pedantic-errors \
 +	-Wmissing-prototypes -Wstrict-prototypes -Wold-style-definition
 +
 +all: $(OBJECTS)
 +	$(CC) $(LFLAGS) -fopenmp -o $(LIB) $(OBJECTS)
 +
 +-include $(DEPS)
 +
 +$(OBJECTS): $(patsubst build/%.o,src/%.c,$@)
 +	$(CC) $(CFLAGS) $(patsubst build/%.o,src/%.c,$@) -o $@
 +
 +clean:
 +	-rm build/*
 +	-rm $(LIB)
 diff --git a/README.md b/README.md new file mode 100644 index 0000000..ccb4b64 --- /dev/null +++ b/README.md @@ -0,0 +1,52 @@ +## SALIS 2.0 - WIP + +### Main differences from Salis 1.0 +1. Tierran templates will be used instead of keys/locks +2. The instruction set is thus shorter +3. Organisms can send/receive instructions to/from a common pipe +4. Organisms can "eat" information +5. Organisms are rewarded for eating +6. Organisms are punished on faults +7. A better naming convention will be used + +### Python integration +1. Salis controller/viewer will be written in python/curses +2. Salis header files will be parsed for easier DLL loading +3. We can now show organisms' IPs on WORLD view +4. Console can make use of readline via curses.textbox +5. Compilation/loading/saving will be done via python +6. Salis may be run as a daemon process + +### New instruction set (32 instructions in total) ++ NOOP0 ++ NOOP1 ++ MOD0 ++ MOD1 ++ MOD2 ++ MOD3 ++ IF ++ NOT ++ JUMPB ++ JUMPF ++ ADDRB ++ ADDRF ++ MALLB ++ MALLF ++ BSWAP ++ SPLIT ++ INC ++ DEC ++ ZERO ++ ONE ++ ADD ++ SUB ++ MUL ++ DIV ++ LOAD ++ WRITE ++ SEND ++ RECEIVE ++ PUSH ++ POP ++ EATB ++ EATF diff --git a/bin/common/.keep b/bin/common/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bin/common/.keep diff --git a/bin/genomes/.keep b/bin/genomes/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bin/genomes/.keep diff --git a/bin/genomes/86.anc b/bin/genomes/86.anc new file mode 100644 index 0000000..30e76f3 --- /dev/null +++ b/bin/genomes/86.anc @@ -0,0 +1 @@ +:::[a...]b...^b^b^b-bba::.!d#d#b?d).:.{bc).::a:.:}bc:..LadWcd^a^cvb?b(.::$~b~d(..:a::: diff --git a/bin/handler.py b/bin/handler.py new file mode 100644 index 0000000..ad3b14e --- /dev/null +++ b/bin/handler.py @@ -0,0 +1,403 @@ +""" SALIS: Viewer/controller for the SALIS simulator. + +file: handler.py +Author: Paul Oliver +Email: paul.t.oliver.design@gmail.com + +This module should be considered the 'controller' part of the Salis simulator. +It receives and parses all user input via keyboard and console commands. It +also takes care of genome compilation (via genome files located on the +'genomes' directory). + +An user may open the Salis console by pressing the 'c' key while in a running +session. A nice quirk is the possibility to run python commands from within the +Salis console. As an example, to get the memory size, an user could type: + +>>> exec output = self._sim.lib.sal_mem_get_size() + +Note that 'output' denotes a storage variable that will get printed on the +console response. This ability gives an user a whole lot of power, and should +be used with care. +""" + +import os +import curses + + +class Handler: +	ESCAPE_KEY = 27 + +	def __init__(self, sim): +		""" Handler constructor. Simply link this class to the main simulation +		class and printer class and create symbol dictionary. +		""" +		self._sim = sim +		self._printer = sim.printer +		self._inst_dict = self._get_inst_dict() +		self._console_history = [] + +	def process_cmd(self, cmd): +		""" Process incoming commands from curses. Commands are received via +		ncurses' getch() function, thus, they must be transformed into their +		character representations with 'ord()'. +		""" +		if cmd == self.ESCAPE_KEY: +			self._sim.lib.sal_main_save( +				self._sim.save_file_path.encode("utf-8") +			) +			self._sim.exit() +		elif cmd == ord(" "): +			self._sim.toggle_state() +		elif cmd == curses.KEY_LEFT: +			self._printer.flip_page(-1) +		elif cmd == curses.KEY_RIGHT: +			self._printer.flip_page(1) +		elif cmd == curses.KEY_DOWN: +			self._printer.scroll_main(-1) +		elif cmd == curses.KEY_UP: +			self._printer.scroll_main(1) +		elif cmd == curses.KEY_RESIZE: +			self._printer.on_resize() +		elif cmd == ord("X"): +			self._printer.toggle_hex() +		elif cmd == ord("x"): +			self._printer.world.zoom_out() +		elif cmd == ord("z"): +			self._printer.world.zoom_in() +		elif cmd == ord("a"): +			self._printer.world.pan_left() +			self._printer.proc_scroll_left() +		elif cmd == ord("d"): +			self._printer.world.pan_right() +			self._printer.proc_scroll_right() +		elif cmd == ord("s"): +			self._printer.world.pan_down() +			self._printer.proc_scroll_down() +		elif cmd == ord("w"): +			self._printer.world.pan_up() +			self._printer.proc_scroll_up() +		elif cmd == ord("S"): +			self._printer.world.pan_reset() +			self._printer.proc_scroll_vertical_reset() +		elif cmd == ord("A"): +			self._printer.world.pan_reset() +			self._printer.proc_scroll_horizontal_reset() +		elif cmd == ord("o"): +			self._printer.proc_select_prev() +		elif cmd == ord("p"): +			self._printer.proc_select_next() +		elif cmd == ord("f"): +			self._printer.proc_select_first() +		elif cmd == ord("l"): +			self._printer.proc_select_last() +		elif cmd == ord("k"): +			self._printer.proc_scroll_to_selected() +		elif cmd == ord("g"): +			self._printer.proc_toggle_gene_view() +		elif cmd == ord("\n"): +			self._printer.run_cursor() +		elif cmd == ord("c"): +			self._printer.run_console() +		else: +			# Check for numeric input. Number keys [1 to 0] cycle the +			# simulation [2 ** ((n - 1) % 10] times. +			try: +				if chr(cmd).isdigit(): +					factor = int(chr(cmd)) +					factor = int(2 ** ((factor - 1) % 10)) +					self._cycle_sim(factor) +			except ValueError: +				pass + +	def handle_console(self, command_raw): +		""" Process console commands. We parse and check for input errors. Any +		python exception messages are redirected to the console-response +		window. +		""" +		if command_raw: +			command = command_raw.split() + +			try: +				# Handle both python and self-thrown exceptions. +				if command[0] in ["q", "quit"]: +					self._on_quit(command, save=True) +				elif command[0] in ["q!", "quit!"]: +					self._on_quit(command, save=False) +				elif command[0] in ["i", "input"]: +					self._on_input(command) +				elif command[0] in ["c", "compile"]: +					self._on_compile(command) +				elif command[0] in ["n", "new"]: +					self._on_new(command) +				elif command[0] in ["k", "kill"]: +					self._on_kill(command) +				elif command[0] in ["e", "exec"]: +					self._on_exec(command) +				elif command[0] in ["s", "scroll"]: +					self._on_scroll(command) +				elif command[0] in ["p", "process"]: +					self._on_proc_select(command) +				elif command[0] in ["r", "rename"]: +					self._on_rename(command) +				elif command[0] in ["save"]: +					self._on_save(command) +				elif command[0] in ["a", "auto"]: +					self._on_set_autosave(command) +				else: +					# Raise if a non-existing command has been given. +					self._raise("Invalid command: '{}'".format(command[0])) +			except BaseException as exep: +				# We parse and redirect python exceptions to the error +				# console-window. +				message = str(exep).strip() +				message = message[0].upper() + message[1:] +				self._printer.show_console_error(message) +			finally: +				# Store command on console history. +				self._console_history.append(command_raw.strip()) + +	@property +	def console_history(self): +		return self._console_history + +	def _raise(self, message): +		""" Generic exception thrower. Throws a 'RuntimeError' initialized with +		the given message. +		""" +		raise RuntimeError("ERROR: {}".format(message)) + +	def _respond(self, message): +		""" Generic console responder. Throws a 'RuntimeError' initialized with +		the given message. +		""" +		raise RuntimeError(message) + +	def _cycle_sim(self, factor): +		""" Simply cycle Salis 'factor' number of times. +		""" +		for _ in range(factor): +			self._sim.lib.sal_main_cycle() +			self._sim.check_autosave() + +	def _get_inst_dict(self): +		""" Transform the instruction list of the printer module into a +		dictionary that's more useful for genome compilation. Instruction +		symbols are keys, values are the actual byte representation. +		""" +		inst_dict = {} + +		for i, inst in enumerate(self._printer.inst_list): +			inst_dict[inst[1]] = i + +		return inst_dict + +	def _on_quit(self, command, save): +		""" Exit simulation. We can choose whether to save the simulation into a +		save file or not. +		""" +		if len(command) > 1: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		if save: +			self._sim.lib.sal_main_save( +				self._sim.save_file_path.encode("utf-8") +			) + +		self._sim.exit() + +	def _write_genome(self, genome, address_list): +		""" Write genome stream into a given list of memory addresses. All +		addresses must be valid or an exception is thrown. +		""" +		# All addresses we will write to must be valid. +		for base_addr in address_list: +			address = int(base_addr, 0) + +			for _ in range(len(genome)): +				if not self._sim.lib.sal_mem_is_address_valid(address): +					self._raise("Address '{}' is invalid".format(address)) + +				address += 1 + +		# All looks well! Let's compile the genome into memory. +		for base_addr in address_list: +			address = int(base_addr, 0) + +			for symbol in genome: +				self._sim.lib.sal_mem_set_inst( +					address, self._inst_dict[symbol] +				) +				address += 1 + +	def _on_input(self, command): +		""" Compile organism from user typed input. Compilation can only occur +		on valid memory addresses. An exception will be thrown when trying to +		write into non-valid address or when input stream is invalid. +		""" +		if len(command) < 3: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		# All characters in file must be actual instruction symbols. +		for character in command[1]: +			if character not in self._inst_dict: +				self._raise("Invalid symbol '{}' found on stream".format( +					character +				)) + +		# All looks well, Let's write the genome into memory. +		self._write_genome(command[1], command[2:]) + +	def _on_compile(self, command): +		""" Compile organism from source genome file. Genomes must be placed on +		the './genomes' directory. Compilation can only occur on valid memory +		addresses. An exception will be thrown when trying to write into +		non-valid address or when genome file is invalid. +		""" +		if len(command) < 3: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		# Open genome file for compilation. +		gen_file = os.path.join(self._sim.path, "genomes", command[1]) + +		with open(gen_file, "r") as f: +			genome = f.read().strip() + +		# Entire genome must be written on a single line. +		if "\n" in genome: +			self._raise("Newline detected on '{}'".format(gen_file)) + +		# All characters in file must be actual instruction symbols. +		for character in genome: +			if character not in self._inst_dict: +				self._raise("Invalid symbol '{}' found on '{}'".format( +					character, gen_file +				)) + +		# All looks well, Let's write the genome into memory. +		self._write_genome(genome, command[2:]) + +	def _on_new(self, command): +		""" Instantiate new organism of given size on given address. These +		memory areas must be free and valid or an exception is thrown. +		""" +		if len(command) < 3: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		# Check that all addresses we will allocate are free and valid. +		for base_addr in command[2:]: +			address = int(base_addr, 0) + +			for _ in range(int(command[1])): +				if not self._sim.lib.sal_mem_is_address_valid(address): +					self._raise("Address '{}' is invalid".format(address)) +				elif self._sim.lib.sal_mem_is_allocated(address): +					self._raise("Address '{}' is allocated".format(address)) + +				address += 1 + +		# All looks well! Let's instantiate our new organism. +		for base_addr in command[2:]: +			address = int(base_addr, 0) +			size = int(command[1], 0) +			self._sim.lib.sal_proc_create(address, size) + +	def _on_kill(self, command): +		""" Kill organism on bottom of reaper queue. +		""" +		if len(command) > 1: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		# Call proc kill function only if there's any organisms to kill. +		if not self._sim.lib.sal_proc_get_count(): +			self._raise("No organisms currently alive") +		else: +			self._sim.lib.sal_proc_kill() + +	def _on_exec(self, command): +		""" Allow a user to execute a python command from within the console. +		Using this is very hack-ish, and not recommended unless you're certain +		of what you're doing! +		""" +		if len(command) < 2: +			self._raise("'{}' must be followed by an executable string".format( +				command[0]) +			) + +		# User may query any simulation variable or status and the console will +		# respond. For example, to query memory size or order, type one of the +		# following: +		# +		#     >>> exec output = self._sim.lib.sal_mem_get_size() +		#     >>> exec output = self._sim.lib.sal_mem_get_order() +		# +		output = {} +		exec(" ".join(command[1:]), locals(), output) + +		if output: +			self._respond("EXEC RESPONDS: {}".format(str(output))) + +	def _on_scroll(self, command): +		""" We can scroll to a specific process (on PROCESS view) or to a +		specific world address (on WORLD view) via the console. +		""" +		if len(command) != 2: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		target = int(command[1], 0) + +		# If on PROCESS page, scroll to given process. +		if self._printer.current_page == "PROCESS": +			if target < self._sim.lib.sal_proc_get_capacity(): +				self._printer.proc_scroll_to(target) +			else: +				self._raise("No process with ID '{}' found".format(target)) +		elif self._printer.current_page == "WORLD": +			if self._sim.lib.sal_mem_is_address_valid(target): +				self._printer.world.scroll_to(target) +			else: +				self._raise("Address '{}' is invalid".format(address)) +		else: +			self._raise("'{}' must be called on PROCESS or WORLD page".format( +				command[0]) +			) + +	def _on_proc_select(self, command): +		""" Select a specific process (on PROCESS or WORLD page). +		""" +		if len(command) != 2: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		target = int(command[1], 0) + +		# If on PROCESS page, scroll to given process. +		if target < self._sim.lib.sal_proc_get_capacity(): +			self._printer.proc_select_by_id(target) +		else: +			self._raise("No process with ID '{}' found".format(target)) + +	def _on_rename(self, command): +		""" Set a new simulation name. Future auto-saved files will use this +		name as prefix. +		""" +		if len(command) != 2: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		self._sim.rename(command[1]) + +	def _on_save(self, command): +		""" Save simulation on its current state. +		""" +		if len(command) != 1: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		self._sim.lib.sal_main_save(self._sim.save_file_path.encode("utf-8")) + +	def _on_set_autosave(self, command): +		""" Set the simulation's auto save interval. Provide any integer +		between 0 and (2**32 - 1). If zero is provided, auto saving will be +		disabled. +		""" +		if len(command) != 2: +			self._raise("Invalid parameters for '{}'".format(command[0])) + +		self._sim.set_autosave(int(command[1], 0)) diff --git a/bin/lib/.keep b/bin/lib/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bin/lib/.keep diff --git a/bin/printer.py b/bin/printer.py new file mode 100644 index 0000000..135e220 --- /dev/null +++ b/bin/printer.py @@ -0,0 +1,833 @@ +""" SALIS: Viewer/controller for the SALIS simulator. + +File: printer.py +Author: Paul Oliver +Email: paul.t.oliver.design@gmail.com + +This module should be considered the 'view' part of the Salis simulator. It +takes care of displaying the simulator's state in a nicely formatted, intuitive +format. It makes use of the curses library for terminal handling. +""" + +import curses +import curses.textpad +import os +import time +from collections import OrderedDict +from ctypes import c_uint8, c_uint32, cast, POINTER +from handler import Handler +from world import World + + +class Printer: +	def __init__(self, sim): +		""" Printer constructor. It takes care of starting up curses, defining +		the data pages and setting the printer on its initial state. +		""" +		self._sim = sim +		self._color_pair_count = 0 +		self._screen = self._get_screen() +		self._inst_list = self._get_inst_list() +		self._proc_elements = self._get_proc_elements() +		self._main = self._get_main() +		self._pages = self._get_pages() +		self._size = self._screen.getmaxyx() +		self._current_page = "MEMORY" +		self._main_scroll = 0 +		self._selected_proc = 0 +		self._selected_proc_data = (c_uint32 * len(self._proc_elements))() +		self._proc_list_scroll = 0 +		self._proc_element_scroll = 0 +		self._proc_gene_scroll = 0 +		self._proc_gene_view = False +		self._curs_y = 0 +		self._curs_x = 0 +		self._print_hex = False +		self._world = World(self, self._sim) + +	def __del__(self): +		""" Printer destructor exits curses. +		""" +		curses.endwin() + +	def get_color_pair(self, fg, bg=-1): +		""" We use this method to set new color pairs, keeping track of the +		number of pairs already set. We return the new color pair ID. +		""" +		self._color_pair_count += 1 +		curses.init_pair(self._color_pair_count, fg, bg) +		return self._color_pair_count + +	def get_cmd(self): +		""" This returns the pressed key from the curses handler. It's called +		during the simulation's main loop. Flushing input is important when in +		non-blocking mode. +		""" +		ch = self._screen.getch() +		curses.flushinp() +		return ch + +	def set_nodelay(self, nodelay): +		""" Toggles between blocking and non-blocking mode on curses. +		""" +		self._screen.nodelay(nodelay) + +	def toggle_hex(self): +		""" Toggle between decimal or hexadecimal printing of all simulation +		state elements. +		""" +		self._print_hex = not self._print_hex + +	def on_resize(self): +		""" Called whenever the terminal window gets resized. +		""" +		self._size = self._screen.getmaxyx() +		self.scroll_main() +		self._world.zoom_reset() + +	def flip_page(self, offset): +		""" Change data page by given offset (i.e. '1' for next page or '-1' +		for previous one). +		""" +		pidx = list(self._pages.keys()).index(self._current_page) +		pidx = (pidx + offset) % len(self._pages) +		self._current_page = list(self._pages.keys())[pidx] +		self.scroll_main() + +	def scroll_main(self, offset=0): +		""" Scrolling is allowed whenever the current page does not fit inside +		the terminal window. This method gets called, with no offset, under +		certain situations, like changing pages, just to make sure the screen +		gets cleared and at least some of the data is always scrolled into +		view. +		""" +		self._screen.clear() +		len_main = len(self._main) +		len_page = len(self._pages[self._current_page]) +		max_scroll = (len_main + len_page + 5) - self._size[0] +		self._main_scroll += offset +		self._main_scroll = max(0, min(self._main_scroll, max_scroll)) + +	def proc_scroll_left(self): +		""" Scroll process data elements or genomes (on PROCESS view) to the +		left. +		""" +		if self._current_page == "PROCESS": +			if self._proc_gene_view: +				self._proc_gene_scroll -= 1 +				self._proc_gene_scroll = max(0, self._proc_gene_scroll) +			else: +				self._proc_element_scroll -= 1 +				self._proc_element_scroll = max(0, self._proc_element_scroll) + +	def proc_scroll_right(self): +		""" Scroll process data elements or genomes (on PROCESS view) to the +		right. +		""" +		if self._current_page == "PROCESS": +			if self._proc_gene_view: +				self._proc_gene_scroll += 1 +			else: +				self._proc_element_scroll += 1 +				max_scroll = len(self._proc_elements) - 1 +				self._proc_element_scroll = min( +					max_scroll, self._proc_element_scroll +				) + +	def proc_scroll_down(self): +		""" Scroll process data table (on PROCESS view) up. +		""" +		if self._current_page == "PROCESS": +			self._proc_list_scroll = max(0, self._proc_list_scroll - 1) + +	def proc_scroll_up(self): +		""" Scroll process data table (on PROCESS view) down. +		""" +		if self._current_page == "PROCESS": +			self._proc_list_scroll = min( +				self._sim.lib.sal_proc_get_capacity() - 1, +				self._proc_list_scroll + 1 +			) + +	def proc_scroll_to(self, proc_id): +		""" Scroll process data table (on PROCESS view) to a specific position. +		""" +		if self._current_page == "PROCESS": +			if proc_id < self._sim.lib.sal_proc_get_capacity(): +				self._proc_list_scroll = proc_id +			else: +				raise RuntimeError("Error: scrolling to invalid process") + +	def proc_scroll_vertical_reset(self): +		""" Scroll process data table (on PROCESS view) back to top. +		""" +		if self._current_page == "PROCESS": +			self._proc_list_scroll = 0 + +	def proc_scroll_horizontal_reset(self): +		""" Scroll process data or genome table (on PROCESS view) back to the +		left. +		""" +		if self._current_page == "PROCESS": +			if self._proc_gene_view: +				self._proc_gene_scroll = 0 +			else: +				self._proc_element_scroll = 0 + +	def proc_select_prev(self): +		""" Select previous process. +		""" +		if self._current_page in ["PROCESS", "WORLD"]: +			self._selected_proc -= 1 +			self._selected_proc %= self._sim.lib.sal_proc_get_capacity() + +	def proc_select_next(self): +		""" Select next process. +		""" +		if self._current_page in ["PROCESS", "WORLD"]: +			self._selected_proc += 1 +			self._selected_proc %= self._sim.lib.sal_proc_get_capacity() + +	def proc_select_first(self): +		""" Select first process on reaper queue. +		""" +		if self._current_page in ["PROCESS", "WORLD"]: +			if self._sim.lib.sal_proc_get_count(): +				self._selected_proc = self._sim.lib.sal_proc_get_first() + +	def proc_select_last(self): +		""" Select last process on reaper queue. +		""" +		if self._current_page in ["PROCESS", "WORLD"]: +			if self._sim.lib.sal_proc_get_count(): +				self._selected_proc = self._sim.lib.sal_proc_get_last() + +	def proc_select_by_id(self, proc_id): +		""" Select process from given ID. +		""" +		if proc_id < self._sim.lib.sal_proc_get_capacity(): +			self._selected_proc = proc_id +		else: +			raise RuntimeError("Error: attempting to select non-existing proc") + +	def proc_scroll_to_selected(self): +		""" Scroll WORLD or PROCESS page so that selected process becomes +		visible. +		""" +		if self._current_page == "PROCESS": +			self._proc_list_scroll = self._selected_proc +		elif self._current_page == "WORLD": +			if not self._sim.lib.sal_proc_is_free(self._selected_proc): +				index = self._proc_elements.index("mb1a") +				address = self._selected_proc_data[index] +				self._world.scroll_to(address) + +	def proc_toggle_gene_view(self): +		""" Toggle between data element or genome view on PROCESS page. +		""" +		if self._current_page == "PROCESS": +			self._proc_gene_view = not self._proc_gene_view + +	def run_cursor(self): +		""" We can toggle a visible cursor on WORLD view to aid us in selecting +		processes. +		""" +		if self._current_page == "WORLD" and self._size[1] > World.PADDING: +			curses.curs_set(True) + +			while True: +				self._curs_y = max(0, min(self._curs_y, self._size[0] - 1)) +				self._curs_x = max(World.PADDING, min( +					self._curs_x, self._size[1] - 1 +				)) +				self._screen.move(self._curs_y, self._curs_x) +				cmd = self._screen.getch() + +				if cmd in [ord("c"), curses.KEY_RESIZE, Handler.ESCAPE_KEY]: +					self.on_resize() +					break +				elif cmd == curses.KEY_LEFT: +					self._curs_x -= 1 +				elif cmd == curses.KEY_RIGHT: +					self._curs_x += 1 +				elif cmd == curses.KEY_DOWN: +					self._curs_y += 1 +				elif cmd == curses.KEY_UP: +					self._curs_y -= 1 +				elif cmd == ord("\n"): +					self._proc_select_by_cursor() +					break + +			curses.curs_set(False) + +	def run_console(self): +		""" Run the Salis console. You can use the console to control all main +		aspects of the simulation, like compiling genomes into memory, creating +		or killing organisms, setting auto-save interval, among other stuff. +		""" +		# Print a pythonic prompt. +		self._print_line(self._size[0] - 1, ">>> ", scroll=False) +		self._screen.refresh() + +		# Create the console child window. We turn it into a Textbox object in +		# order to allow line-editing and extract output easily. +		console = curses.newwin(1, self._size[1] - 5, self._size[0] - 1, 5) +		textbox = curses.textpad.Textbox(console, insert_mode=True) +		textbox.stripspaces = True + +		# Grab a copy of the console history and instantiate a pointer to the +		# last element. +		history = self._sim.handler.console_history + [""] +		pointer = len(history) - 1 + +		# Nested method reinserts recorded commands from history into console. +		def access_history(cmd): +			nonlocal pointer + +			if pointer == len(history) - 1: +				history[-1] = console.instr().strip() + +			if cmd == "up" and pointer != 0: +				pointer -= 1 +			elif cmd == "down" and pointer < len(history) - 1: +				pointer += 1 + +			console.clear() +			console.addstr(0, 0, history[pointer]) +			console.refresh() + +		# Declare custom validator to control special commands. +		def validator(cmd): +			EXIT = 7 + +			if cmd in [curses.KEY_RESIZE, Handler.ESCAPE_KEY]: +				console.clear() +				return EXIT +			elif cmd == curses.KEY_UP: +				access_history("up") +			elif cmd == curses.KEY_DOWN: +				access_history("down") +			else: +				return cmd + +		# Run the Textbox object with our custom validator. +		curses.curs_set(True) +		output = textbox.edit(validator) +		curses.curs_set(False) + +		# Finally, extract data from console and send to handler. +		self._sim.handler.handle_console(output) +		self._screen.clear() + +	def show_console_error(self, message): +		""" Shows Salis console error messages, if any. These messages might +		contain actual python exception output. +		""" +		self._print_line(self._size[0] - 1, ">>>", curses.color_pair( +			self._pair_error +		) | curses.A_BOLD) +		self._screen.refresh() + +		# We also use a Textbox object, just so that execution gets halted +		# until a key gets pressed (even on non-blocking mode). +		console = curses.newwin(1, self._size[1] - 5, self._size[0] - 1, 5) +		textbox = curses.textpad.Textbox(console) + +		# Curses may raise an exception if printing on the edge of the screen; +		# we can just ignore it. +		try: +			console.addstr(0, 0, message, curses.color_pair( +				self._pair_error +			) | curses.A_BOLD) +		except curses.error: +			pass + +		# Custom validator simply exits on any key. +		def validator(cmd): +			EXIT = 7 +			return EXIT + +		textbox.edit(validator) +		self._screen.clear() + +	def print_page(self): +		""" Print current page to screen. We use the previously generated +		'_pages' dictionary to easily associate a label to a Salis function. +		""" +		# Update selected proc data if in WORLD view. +		if self._current_page == "WORLD": +			self._sim.lib.sal_proc_get_proc_data(self._selected_proc, cast( +				self._selected_proc_data, POINTER(c_uint32) +			)) + +		# Print MAIN simulation data. +		self._print_line( +			1, "SALIS[{}]".format(self._sim.args.file), curses.color_pair( +				self._pair_header +			) | curses.A_BOLD +		) +		self._print_widget(2, self._main) + +		# Print data of currently selected page. +		main_lines = len(self._main) + 3 +		self._print_header(main_lines, self._current_page) +		self._print_widget(main_lines + 1, self._pages[self._current_page]) + +		# Print special widgets (WORLD view and PROCESS list). +		if self._current_page == "WORLD": +			self._world.render() +		elif self._current_page == "PROCESS": +			self._print_proc_list() + +	@property +	def screen(self): +		return self._screen + +	@property +	def inst_list(self): +		return self._inst_list + +	@property +	def proc_elements(self): +		return self._proc_elements + +	@property +	def size(self): +		return self._size + +	@property +	def current_page(self): +		return self._current_page + +	@property +	def selected_proc(self): +		return self._selected_proc + +	@property +	def selected_proc_data(self): +		return self._selected_proc_data + +	@property +	def proc_list_scroll(self): +		return self._proc_list_scroll + +	@property +	def world(self): +		return self._world + +	def _set_colors(self): +		""" Define the color pairs for the data printer. +		""" +		curses.start_color() +		curses.use_default_colors() +		self._pair_header = self.get_color_pair(curses.COLOR_BLUE) +		self._pair_selected = self.get_color_pair(curses.COLOR_YELLOW) +		self._pair_error = self.get_color_pair(curses.COLOR_RED) + +	def _get_screen(self): +		""" Prepare and return the main curses window. We also set a shorter +		delay when responding to a pressed escape key. +		""" +		# Set a shorter delay to the ESCAPE key, so that we may use it to exit +		# Salis. +		os.environ.setdefault("ESCDELAY", "25") + +		# Prepare curses screen. +		screen = curses.initscr() +		curses.noecho() +		curses.cbreak() +		screen.keypad(True) +		curses.curs_set(False) + +		# We need color support in order to run the printer module. +		if curses.has_colors(): +			self._set_colors() +		else: +			raise RuntimeError("Error: no color support.") + +		return screen + +	def _get_inst_list(self): +		""" Parse instruction set from C header file named 'instset.h'. We're +		using the keyword 'SALIS_INST' to identify an instruction definition, +		so be careful not to use this keyword anywhere else on the headers. +		""" +		inst_list = [] +		inst_file = os.path.join(self._sim.path, "../include/instset.h") + +		with open(inst_file, "r") as f: +			lines = f.read().splitlines() + +		for line in lines: +			if line and line.split()[0] == "SALIS_INST": +				inst_name = line.split()[1][:4] +				inst_symb = line.split()[3] +				inst_list.append((inst_name, inst_symb)) + +		return inst_list + +	def _get_proc_elements(self): +		""" Parse process structure member variables from C header file named +		'process.h'. We're using the keyword 'SALIS_PROC_ELEMENT' to identify +		element declarations, so be careful not to use this keyword anywhere +		else on the headers. +		""" +		proc_elem_list = [] +		proc_elem_file = os.path.join(self._sim.path, "../include/process.h") + +		with open(proc_elem_file, "r") as f: +			lines = f.read().splitlines() + +		for line in lines: +			if line and line.split()[0] == "SALIS_PROC_ELEMENT": +				proc_elem_name = line.split()[2].split(";")[0] + +				if proc_elem_name == "stack[8]": +					# The stack is a special member variable, an array. We +					# translate it by returning a list of stack identifiers. +					proc_elem_list += ["stack[{}]".format(i) for i in range(8)] +				else: +					# We can assume all other struct elements are single +					# variables. +					proc_elem_list.append(proc_elem_name) + +		return proc_elem_list + +	def _get_main(self): +		""" Generate main set of data fields to be printed. We associate, on a +		list object, a label to each Salis function to be called. The following +		elements get printed on all pages. +		""" +		return [ +			("e", "cycle", self._sim.lib.sal_main_get_cycle), +			("e", "epoch", self._sim.lib.sal_main_get_epoch), +			("e", "state", lambda: self._sim.state), +			("e", "autosave", lambda: self._sim.autosave), +		] + +	def _get_pages(self): +		""" Generate data fields to be printed on each page. We associate, on a +		list object, a label to each Salis function to be called. Each list +		represents a PAGE. We initialize all pages inside an ordered dictionary +		object. +		""" +		# The following widgets help up print special sets of data elements. +		# The use of nested lambdas is needed to receive updated values. +		# Instruction counter widget: +		inst_widget = [("e", inst[0], (lambda j: ( +			lambda: self._sim.lib.sal_mem_get_inst_count(j) +		))(i)) for i, inst in enumerate(self._inst_list)] + +		# Evolver module state widget: +		state_widget = [("e", "state[{}]".format(i), (lambda j: ( +			lambda: self._sim.lib.sal_evo_get_state(j) +		))(i)) for i in range(4)] + +		# Selected process state widget: +		selected_widget = [("p", element, (lambda j: ( +			lambda: self._selected_proc_data[j] +		))(i)) for i, element in enumerate(self._proc_elements)] + +		# With the help of the widgets above, we can declare the PAGES +		# dictionary object. +		return OrderedDict([ +			("MEMORY", [ +				("e", "order", self._sim.lib.sal_mem_get_order), +				("e", "size", self._sim.lib.sal_mem_get_size), +				("e", "blocks", self._sim.lib.sal_mem_get_block_start_count), +				("e", "allocated", self._sim.lib.sal_mem_get_allocated_count), +				("e", "ips", self._sim.lib.sal_mem_get_ip_count), +				("s", ""), +				("h", "INSTRUCTIONS"), +			] + inst_widget), +			("EVOLVER", [ +				("e", "last", self._sim.lib.sal_evo_get_last_changed_address), +				("e", "calls", self._sim.lib.sal_evo_get_calls_on_last_cycle), +			] + state_widget), +			("PROCESS", [ +				("e", "count", self._sim.lib.sal_proc_get_count), +				("e", "capacity", self._sim.lib.sal_proc_get_capacity), +				("e", "first", self._sim.lib.sal_proc_get_first), +				("e", "last", self._sim.lib.sal_proc_get_last), +				("e", "exec", +					self._sim.lib.sal_proc_get_instructions_executed +				), +			]), +			("WORLD", [ +				("e", "position", lambda: self._world.pos), +				("e", "zoom", lambda: self._world.zoom), +				("e", "selected", lambda: self._selected_proc), +				("s", ""), +				("h", "SELECTED PROC"), +			] + selected_widget), +		]) + +	def _print_line(self, ypos, line, attrs=curses.A_NORMAL, scroll=True): +		""" Print a single line on screen only when it's visible. +		""" +		if scroll: +			ypos -= self._main_scroll + +		if 0 <= ypos < self._size[0]: +			# Curses raises an exception each time we print on the screen's +			# edge. We can just catch and ignore it. +			try: +				line = line[:self._size[1] - 1] +				self._screen.addstr(ypos, 1, line, attrs) +			except curses.error: +				pass + +	def _print_header(self, ypos, line): +		""" Print a bold header. +		""" +		header_attr = curses.A_BOLD | curses.color_pair(self._pair_header) +		self._print_line(ypos, line, header_attr) + +	def _print_value(self, ypos, element, value, attr=curses.A_NORMAL): +		""" Print a label:value pair. +		""" +		if type(value) == int: +			if value == ((2 ** 32) - 1): +				# In Salis, UINT32_MAX is used to represent NULL. We print NULL +				# as three dashes. +				value = "---" +			elif self._print_hex: +				value = hex(value) + +		line = "{:<10} : {:>10}".format(element, value) +		self._print_line(ypos, line, attr) + +	def _print_proc_element(self, ypos, element, value): +		""" Print elements of currently selected process. We highlight in +		YELLOW if the selected process is running. +		""" +		if self._sim.lib.sal_proc_is_free(self._selected_proc): +			attr = curses.A_NORMAL +		else: +			attr = curses.color_pair(self._pair_selected) + +		self._print_value(ypos, element, value, attr) + +	def _print_widget(self, ypos, widget): +		""" Print a widget (data PAGE) on screen. +		""" +		for i, element in enumerate(widget): +			if element[0] == "s": +				continue +			elif element[0] == "h": +				self._print_header(i + ypos, element[1]) +			elif element[0] == "e": +				self._print_value(i + ypos, element[1], element[2]()) +			elif element[0] == "p": +				self._print_proc_element(i + ypos, element[1], element[2]()) + +	def _clear_line(self, ypos): +		""" Clear the specified line. +		""" +		if 0 <= ypos < self._size[0]: +			self._screen.move(ypos, 0) +			self._screen.clrtoeol() + +	def _print_proc_data_list(self): +		""" Print list of process data elements in PROCESS page. We can toggle +		between printing the data elements or the genomes by pressing the 'g' +		key. +		""" +		# First, print the table header, by extracting element names from the +		# previously generated proc element list. +		ypos = len(self._main) + len(self._pages["PROCESS"]) + 5 +		header = " | ".join(["{:<10}".format("pidx")] + [ +			"{:>10}".format(element) +			for element in self._proc_elements[self._proc_element_scroll:] +		]) +		self._clear_line(ypos) +		self._print_header(ypos, header) +		ypos += 1 +		proc_id = self._proc_list_scroll + +		# Print all proc elements in decimal or hexadecimal format, depending +		# on hex-flag being set. +		if self._print_hex: +			data_format = lambda x: hex(x) +		else: +			data_format = lambda x: x + +		# Lastly, iterate all lines and print as much process data as it fits. +		# We can scroll the process data table using the 'wasd' keys. +		while ypos < self._size[0]: +			self._clear_line(ypos) + +			if proc_id < self._sim.lib.sal_proc_get_capacity(): +				if proc_id == self._selected_proc: +					# Always highlight the selected process. +					attr = curses.color_pair(self._pair_selected) +				else: +					attr = curses.A_NORMAL + +				# Retrieve a copy of the selected process state and store it in +				# a list object. +				proc_data = (c_uint32 * len(self._proc_elements))() +				self._sim.lib.sal_proc_get_proc_data(proc_id, cast( +					proc_data, POINTER(c_uint32)) +				) + +				# Lastly, assemble and print the next table row. +				row = " | ".join(["{:<10}".format(proc_id)] + [ +					"{:>10}".format(data_format(element)) +					for element in proc_data[self._proc_element_scroll:] +				]) +				self._print_line(ypos, row, attr) + +			proc_id += 1 +			ypos += 1 + +	def _print_proc_gene_block(self, ypos, gidx, xpos, mbs, mba, ip, sp, pair): +		""" Print a sub-set of a process genome. Namely, on of its two memory +		blocks. +		""" +		while gidx < mbs and xpos < curses.COLS: +			gaddr = mba + gidx + +			if gaddr == ip: +				attr = curses.color_pair(self._world.pair_sel_ip) +			elif gaddr == sp: +				attr = curses.color_pair(self._world.pair_sel_sp) +			else: +				attr = curses.color_pair(pair) + +			# Retrieve instruction from memory and transform it to correct +			# symbol. +			inst = self._sim.lib.sal_mem_get_inst(gaddr) +			symb = self._inst_list[inst][1] + +			# Curses raises an exception each time we print on the screen's +			# edge. We can just catch and ignore it. +			try: +				self._screen.addch(ypos, xpos, symb, attr) +			except curses.error: +				pass + +			gidx += 1 +			xpos += 1 + +		return xpos + +	def _print_proc_gene(self, ypos, proc_id): +		""" Print a single process genome on the genome table. We use the same +		colors to represent memory blocks, IP and SP of each process, as those +		used to represent the selected process on WORLD view. +		""" +		# There's nothing to print if process is free. +		if self._sim.lib.sal_proc_is_free(proc_id): +			return + +		# Process is alive. Retrieve a copy of the current process state and +		# store it in a list object. +		proc_data = (c_uint32 * len(self._proc_elements))() +		self._sim.lib.sal_proc_get_proc_data(proc_id, cast( +			proc_data, POINTER(c_uint32)) +		) + +		# Let's extract all data of interest. +		mb1a = proc_data[self._proc_elements.index("mb1a")] +		mb1s = proc_data[self._proc_elements.index("mb1s")] +		mb2a = proc_data[self._proc_elements.index("mb2a")] +		mb2s = proc_data[self._proc_elements.index("mb2s")] +		ip = proc_data[self._proc_elements.index("ip")] +		sp = proc_data[self._proc_elements.index("sp")] + +		# Always print MAIN memory block (mb1) first (on the left side). That +		# way we can keep most of our attention on the parent. +		xpos = self._print_proc_gene_block( +			ypos, self._proc_gene_scroll, 14, mb1s, mb1a, ip, sp, +			self._world.pair_sel_mb1 +		) + +		# Reset gene counter and print child memory block, if it exists. +		if mb1s < self._proc_gene_scroll: +			gidx = self._proc_gene_scroll - mb1s +		else: +			gidx = 0 + +		self._print_proc_gene_block( +			ypos, gidx, xpos, mb2s, mb2a, ip, sp, self._world.pair_sel_mb2 +		) + +	def _print_proc_gene_list(self): +		""" Print list of process genomes in PROCESS page. We can toggle +		between printing the genomes or the data elements by pressing the 'g' +		key. +		""" +		# First, print the table header. We print the current gene-scroll +		# position for easy reference. Return back to zero scroll with the 'A' +		# key. +		ypos = len(self._main) + len(self._pages["PROCESS"]) + 5 +		header = "{:<10} | genes {} -->".format( +			"pidx", self._proc_gene_scroll +		) +		self._clear_line(ypos) +		self._print_header(ypos, header) +		ypos += 1 +		proc_id = self._proc_list_scroll + +		# Iterate all lines and print as much genetic data as it fits. We can +		# scroll the gene data table using the 'wasd' keys. +		while ypos < self._size[0]: +			self._clear_line(ypos) + +			if proc_id < self._sim.lib.sal_proc_get_capacity(): +				if proc_id == self._selected_proc: +					# Always highlight the selected process. +					attr = curses.color_pair(self._pair_selected) +				else: +					attr = curses.A_NORMAL + +				# Assemble and print the next table row. +				row = "{:<10} |".format(proc_id) +				self._print_line(ypos, row, attr) +				self._print_proc_gene(ypos, proc_id) + +			proc_id += 1 +			ypos += 1 + +	def _print_proc_list(self): +		""" Print list of process genomes or process data elements in PROCESS +		page. We can toggle between printing the genomes or the data elements +		by pressing the 'g' key. +		""" +		if self._proc_gene_view: +			self._print_proc_gene_list() +		else: +			self._print_proc_data_list() + +	def _proc_select_by_cursor(self): +		""" Select process located on address under cursor, if any exists. +		""" +		# First, calculate address under cursor. +		ypos = self._curs_y +		xpos = self._curs_x - World.PADDING +		line_size = self._size[1] - World.PADDING +		address = self._world.pos + ( +			((ypos * line_size) + xpos) * self._world.zoom +		) + +		# Now, iterate all living processes and try to find one that owns the +		# calculated address. +		if self._sim.lib.sal_mem_is_address_valid(address): +			for proc_id in range(self._sim.lib.sal_proc_get_count()): +				if not self._sim.lib.sal_proc_is_free(proc_id): +					proc_data = (c_uint32 * len(self._proc_elements))() +					self._sim.lib.sal_proc_get_proc_data(proc_id, cast( +						proc_data, POINTER(c_uint32)) +					) +					mb1a = proc_data[self._proc_elements.index("mb1a")] +					mb1s = proc_data[self._proc_elements.index("mb1s")] +					mb2a = proc_data[self._proc_elements.index("mb2a")] +					mb2s = proc_data[self._proc_elements.index("mb2s")] + +					if ( +						mb1a <= address < (mb1a + mb1s) or +						mb2a <= address < (mb2a + mb2s) +					): +						self._selected_proc = proc_id +						break diff --git a/bin/salis.py b/bin/salis.py new file mode 100755 index 0000000..6dd82b0 --- /dev/null +++ b/bin/salis.py @@ -0,0 +1,346 @@ +#!/usr/bin/env python3 + +""" SALIS: Viewer/controller for the SALIS simulator. + +File: salis.py +Author: Paul Oliver +Email: paul.t.oliver.design@gmail.com + +Main handler for the Salis simulator. The Salis class takes care of +initializing, running and shutting down the simulator and other sub-modules. It +also takes care of parsing the command-line arguments and linking to the Salis +library with the help of ctypes. + +To execute this script, make sure to have python3 installed and in your path, +as well as the cython package. Also, make sure it has correct execute +permissions (chmod). +""" + +import os +import re +import sys +import time +import traceback +from argparse import ArgumentParser, HelpFormatter +from ctypes import CDLL, c_bool, c_uint8, c_uint32, c_char_p, POINTER +from handler import Handler +from printer import Printer + + +__version__ = "2.0" + + +class Salis: +	def __init__(self): +		""" Salis constructor. Arguments are passed through the command line +		and parsed with the 'argparse' module. Library is loaded with 'CDLL' +		and C headers are parsed to detect function argument and return types. +		""" +		self._path = self._get_path() +		self._args = self._parse_args() +		self._log = self._open_log_file() +		self._save_file_path = self._get_save_file_path() +		self._common_pipe = self._get_common_pipe() +		self._lib = self._parse_lib() +		self._printer = Printer(self) +		self._handler = Handler(self) +		self._state = "paused" +		self._autosave = "---" +		self._exit = False + +		# Based on CLI arguments, initialize a new Salis simulation or load +		# existing one from file. +		if self._args.action == "new": +			self._lib.sal_main_init( +				self._args.order, self._common_pipe.encode("utf-8") +			) +		elif self._args.action == "load": +			self._lib.sal_main_load( +				self._save_file_path.encode("utf-8"), +				self._common_pipe.encode("utf-8") +			) + +	def __del__(self): +		""" Salis destructor. +		""" +		# In case an error occurred early during initialization, checks whether +		# Salis has been initialized correctly before attempting to shut it +		# down. +		if hasattr(self, "_lib") and hasattr(self._lib, "sal_main_quit"): +			if self._lib.sal_main_is_init(): +				self._lib.sal_main_quit() + +		# If simulation ended correctly, 'error.log' should be empty. Delete +		# file it exists and its empty. +		if ( +			hasattr(self, "_log") and +			os.path.isfile(self._log) and +			os.stat(self._log).st_size == 0 +		): +			os.remove(self._log) + +	def run(self): +		""" Runs main simulation loop. Curses may be placed on non-blocking +		mode, which allows simulation to run freely while still listening to +		user input. +		""" +		while not self._exit: +			self._printer.print_page() +			self._handler.process_cmd(self._printer.get_cmd()) + +			# If in non-blocking mode, re-print data once every 15 +			# milliseconds. +			if self._state == "running": +				end = time.time() + 0.015 + +				while time.time() < end: +					self._lib.sal_main_cycle() +					self.check_autosave() + +	def toggle_state(self): +		""" Toggle between 'paused' and 'running' states. On 'running' curses +		gets placed in non-blocking mode. +		""" +		if self._state == "paused": +			self._state = "running" +			self._printer.set_nodelay(True) +		else: +			self._state = "paused" +			self._printer.set_nodelay(False) + +	def rename(self, new_name): +		""" Give the simulation a new name. +		""" +		self._args.file = new_name +		self._save_file_path = self._get_save_file_path() + +	def set_autosave(self, interval): +		""" Set the simulation's auto-save interval. When set to zero, auto +		saving is disabled, +		""" +		if not interval: +			self._autosave = "---" +		else: +			self._autosave = interval + +	def check_autosave(self): +		""" Save simulation to './sims/auto/*' whenever the autosave interval +		is reached. We use the following naming convention for auto-saved files: + +		>>> ./sims/auto/<file-name>.<sim-epoch>.<sim-cycle>.auto +		""" +		if self._autosave != "---": +			if not self._lib.sal_main_get_cycle() % self._autosave: +				auto_path = os.path.join(self._path, "sims/auto", ".".join([ +					self._args.file, +					"{:08x}".format(self._lib.sal_main_get_epoch()), +					"{:08x}".format(self._lib.sal_main_get_cycle()), +					"auto" +				])) +				self._lib.sal_main_save(auto_path.encode("utf-8")) + +	def exit(self): +		""" Signal we want to exit the simulator. +		""" +		self._exit = True + +	@property +	def path(self): +		return self._path + +	@property +	def save_file_path(self): +		return self._save_file_path + +	@property +	def common_pipe(self): +		return self._common_pipe + +	@property +	def args(self): +		return self._args + +	@property +	def lib(self): +		return self._lib + +	@property +	def printer(self): +		return self._printer + +	@property +	def handler(self): +		return self._handler + +	@property +	def state(self): +		return self._state + +	@property +	def autosave(self): +		return self._autosave + +	def _get_path(self): +		""" Retrieve the absolute path of this script. We need to do this in +		order to detect the './lib', './sims' and './genomes' subdirectories. +		""" +		return os.path.dirname(__file__) + +	def _get_save_file_path(self): +		""" Retrieve the absolute path of the file to which we will save this +		simulation when we exit Salis. +		""" +		return os.path.join(self._path, "sims", self._args.file) + +	def _get_common_pipe(self): +		""" Get absolute path of the common pipe. This FIFO object may be used +		by concurrent Salis simulations to share data between themselves. +		""" +		return os.path.join(self._path, "common/pipe") + +	def _parse_args(self): +		""" Parse command-line arguments with the 'argparse' module. To learn +		more about each command, invoke the simulator in one of the following +		ways: + +			(venv) $ python tsalis.py --help +			(venv) $ python tsalis.py new --help +			(venv) $ python tsalis.py load --help + +		""" +		# Custom formatter helps keep all help data aligned. +		formatter = lambda prog: HelpFormatter(prog, max_help_position=30) + +		# Initialize the main parser with our custom formatter. +		parser = ArgumentParser( +			description="Viewer/controller for the Salis simulator.", +			formatter_class=formatter +		) +		parser.add_argument( +			"-v", "--version", action="version", +			version="Salis: A-Life Simulator (" + __version__ + ")" +		) + +		# Initialize the 'new/load' action subparsers. +		subparsers = parser.add_subparsers( +			dest="action", help="Possible actions..." +		) +		subparsers.required = True + +		# Set up subparser for the create 'new' action. +		new_parser = subparsers.add_parser("new", formatter_class=formatter) +		new_parser.add_argument( +			"-o", "--order", required=True, type=lambda x: int(x, 0), +			metavar="[1-31]", help="Create new simulation of given ORDER" +		) +		new_parser.add_argument( +			"-f", "--file", required=True, type=str, metavar="FILE", +			help="Name of FILE to save simulation to on exit" +		) + +		# Set up subparser for the 'load' existing action. +		load_parser = subparsers.add_parser("load", formatter_class=formatter) +		load_parser.add_argument( +			"-f", "--file", required=True, type=str, metavar="FILE", +			help="Load previously saved simulation from FILE" +		) + +		# Finally, parse all arguments. +		args = parser.parse_args() + +		# Revise that parsed CL arguments are valid. +		if args.action == "new": +			if args.order not in range(1, 32): +				parser.error("Order must be an integer between 1 and 31") +		else: +			savefile = os.path.join(self._path, "sims", args.file) + +			# No save-file with given name has been detected. +			if not os.path.isfile(savefile): +				parser.error( +					"Save file provided '{}' does not exist".format(savefile) +				) + +		return args + +	def _open_log_file(self): +		""" Create a log file to store errors on. It will get deleted if no +		errors are detected. +		""" +		log_file = os.path.join(self._path, "error.log") +		sys.stderr = open(log_file, "w") +		return log_file + +	def _parse_lib(self): +		""" Dynamically parse the Salis library C header files. We do this in +		order to more easily set the correct input/output types of all loaded +		functions. C functions to be parsed must be declared in a '.h' file +		located on the '../include' directory, using the following syntax: + +			SALIS_API restype func_name(arg1_type arg1, arg2_type arg2); + +		Note to developers: the 'SALIS_API' keyword should *NOT* be used +		anywhere else in the header files (not even in comments)! +		""" +		lib = CDLL(os.path.join(self._path, "lib/libsalis.so")) +		include_dir = os.path.join(self._path, "../include") +		c_includes = [ +			os.path.join(include_dir, f) +			for f in os.listdir(include_dir) +			# Only parse '.h' header files. +			if os.path.isfile(os.path.join(include_dir, f)) and f[-2:] == ".h" +		] +		funcs_to_set = [] + +		for include in c_includes: +			with open(include, "r") as f: +				text = f.read() + +			# Regexp to detect C functions to parse. This is a *very lazy* +			# parser. So, if you want to expand/tweak Salis, be careful when +			# declaring new functions! +			funcs = re.findall(r"SALIS_API([\s\S]+?);", text, re.MULTILINE) + +			for func in funcs: +				func = func.replace("\n", "") +				func = func.replace("\t", "") +				func = func.strip() +				restype = func.split()[0] +				name = func.split()[1].split("(")[0] +				args = [ +					arg.split()[0] +					for arg in func.split("(")[1].split(")")[0].split(",") +				] +				funcs_to_set.append({ +					"name": name, +					"restype": restype, +					"args": args +				}) + +		# All Salis typedefs must be included here, associated to their CTYPES +		# equivalents. +		type_convert = { +			"void": None, +			"boolean": c_bool, +			"uint8": c_uint8, +			"uint8_p": POINTER(c_uint8), +			"uint32": c_uint32, +			"uint32_p": POINTER(c_uint32), +			"string": c_char_p, +			"Process": None, +		} + +		# Finally, set correct arguments and return types of all Salis +		# functions. +		for func in funcs_to_set: +			func["restype"] = type_convert[func["restype"]] +			func["args"] = [type_convert[arg] for arg in func["args"]] +			getattr(lib, func["name"]).restype = func["restype"] +			getattr(lib, func["name"]).argtype = func["args"] + +		return lib + +if __name__ == "__main__": +	""" Entry point... +	""" +	Salis().run() diff --git a/bin/sims/.keep b/bin/sims/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bin/sims/.keep diff --git a/bin/sims/auto/.keep b/bin/sims/auto/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bin/sims/auto/.keep diff --git a/bin/world.py b/bin/world.py new file mode 100644 index 0000000..60fd427 --- /dev/null +++ b/bin/world.py @@ -0,0 +1,277 @@ +""" SALIS: Viewer/controller for the SALIS simulator. + +File: world.py +Author: Paul Oliver +Email: paul.t.oliver.design@gmail.com + +This module should be considered an extension of the 'printer' module. It takes +care of getting a pre-redered image from Salis and post-processing it in order +to print it into the curses screen. It also keeps track of user cntrollable +rendering parameters (position and zoom). +""" + +import curses +from ctypes import c_uint8, cast, POINTER + + +class World: +	PADDING = 25 + +	def __init__(self, printer, sim): +		""" World constructor. We link to the printer and main simulation +		classes. We also setup the colors for rendering the world. +		""" +		self._printer = printer +		self._sim = sim +		self._pos = 0 +		self._zoom = 1 +		self._set_world_colors() + +	def render(self): +		""" Function for rendering the world. We get a pre-rendered buffer from +		Salis' memory module (its way faster to pre-render in C) and use that +		to assemble the world image in Python. +		""" +		# Window is so narrow that world is not visible. +		if self._printer.size[1] <= self.PADDING: +			return + +		# Get pre-rendered image from Salis' memory module. +		line_width = self._printer.size[1] - self.PADDING +		print_area = self._printer.size[0] * line_width +		c_buffer = (c_uint8 * print_area)() +		self._sim.lib.sal_mem_render_image( +			self._pos, self._zoom, print_area, cast(c_buffer, POINTER(c_uint8)) +		) + +		# Get data elements of selected process, if it's running, and store +		# them into a convenient dict object. +		if self._sim.lib.sal_proc_is_free(self._printer.selected_proc): +			sel_data = None +		else: +			out_data = self._printer.selected_proc_data +			out_elem = self._printer.proc_elements +			sel_data = { +				"ip": out_data[out_elem.index("ip")], +				"sp": out_data[out_elem.index("sp")], +				"mb1a": out_data[out_elem.index("mb1a")], +				"mb1s": out_data[out_elem.index("mb1s")], +				"mb2a": out_data[out_elem.index("mb2a")], +				"mb2s": out_data[out_elem.index("mb2s")], +			} + +		# Iterate all cells on printable area and print the post-rendered +		# cells. Rendered cells contain info about bit flags and instructions +		# currently written into memory. +		bidx = 0 + +		for y in range(self._printer.size[0]): +			for x in range(line_width): +				xpad = x + self.PADDING +				addr = self._pos + (self._zoom * bidx) +				symb, attr = self._render_cell(c_buffer[bidx], addr, sel_data) + +				# Curses raises an exception when printing on the edge of the +				# screen; we can just ignore it. +				try: +					self._printer.screen.addch(y, xpad, symb, attr) +				except curses.error: +					pass + +				bidx += 1 + +	def zoom_out(self): +		""" Zoom out by a factor of 2 (zoom *= 2). +		""" +		if self._is_world_editable(): +			self._zoom = min(self._zoom * 2, self._get_max_zoom()) + +	def zoom_in(self): +		""" Zoom in by a factor of 2 (zoom //= 2). +		""" +		if self._is_world_editable(): +			self._zoom = max(self._zoom // 2, 1) + +	def zoom_reset(self): +		""" Reset zoom to a valid value on certain events (i.e. during terminal +		resizing). +		""" +		self._zoom = min(self._zoom, self._get_max_zoom()) + +	def pan_left(self): +		""" Pan world to the left (pos -= zoom). +		""" +		if self._is_world_editable(): +			self._pos = max(self._pos - self._zoom, 0) + +	def pan_right(self): +		""" Pan world to the right (pos += zoom). +		""" +		if self._is_world_editable(): +			max_pos = self._sim.lib.sal_mem_get_size() - 1 +			self._pos = min(self._pos + self._zoom, max_pos) + +	def pan_down(self): +		""" Pan world downward (pos += zoom * columns). +		""" +		if self._is_world_editable(): +			self._pos = max(self._pos - self._get_line_area(), 0) + +	def pan_up(self): +		""" Pan world upward (pos -= zoom * columns). +		""" +		if self._is_world_editable(): +			max_pos = self._sim.lib.sal_mem_get_size() - 1 +			self._pos = min(self._pos + self._get_line_area(), max_pos) + +	def pan_reset(self): +		""" Set world position to zero. +		""" +		if self._is_world_editable(): +			self._pos = 0 + +	def scroll_to(self, pos): +		""" Move world pos to a specified position. +		""" +		if self._is_world_editable(): +			if self._sim.lib.sal_mem_is_address_valid(pos): +				self._pos = pos +			else: +				raise RuntimeError("Error: scrolling to an invalid address") + +	@property +	def pos(self): +		return self._pos + +	@property +	def zoom(self): +		return self._zoom + +	@property +	def pair_sel_mb2(self): +		return self._pair_sel_mb2 + +	@property +	def pair_sel_mb1(self): +		return self._pair_sel_mb1 + +	@property +	def pair_sel_sp(self): +		return self._pair_sel_sp + +	@property +	def pair_sel_ip(self): +		return self._pair_sel_ip + +	def _set_world_colors(self): +		""" Define color pairs for rendering the world. Each color has a +		special meaning, referring to the selected process IP, SP and memory +		blocks, or to bit flags currently set on rendered cells. +		""" +		self._pair_free = self._printer.get_color_pair( +			curses.COLOR_BLUE +		) +		self._pair_alloc = self._printer.get_color_pair( +			curses.COLOR_BLACK, curses.COLOR_BLUE +		) +		self._pair_mbstart = self._printer.get_color_pair( +			curses.COLOR_BLACK, curses.COLOR_CYAN +		) +		self._pair_ip = self._printer.get_color_pair( +			curses.COLOR_BLACK, curses.COLOR_WHITE +		) +		self._pair_sel_mb2 = self._printer.get_color_pair( +			curses.COLOR_BLACK, curses.COLOR_GREEN +		) +		self._pair_sel_mb1 = self._printer.get_color_pair( +			curses.COLOR_BLACK, curses.COLOR_YELLOW +		) +		self._pair_sel_sp = self._printer.get_color_pair( +			 curses.COLOR_BLACK, curses.COLOR_MAGENTA +		) +		self._pair_sel_ip = self._printer.get_color_pair( +			 curses.COLOR_BLACK, curses.COLOR_RED +		) + +	def _render_cell(self, byte, addr, sel_data=None): +		""" Render a single cell on the WORLD view. All cells are rendered by +		interpreting the values coming in from the buffer. We overlay special +		colors for representing the selected organism's state, on top of the +		more common colors used to represent memory state. +		""" +		# Paint black all cells that are out of memory bounds. +		if not self._sim.lib.sal_mem_is_address_valid(addr): +			return " ", curses.A_NORMAL + +		# Check if cell contains part of the currently selected process. +		if sel_data: +			top_addr = addr + self._zoom +			top_mb1a = sel_data["mb1a"] + sel_data["mb1s"] +			top_mb2a = sel_data["mb2a"] + sel_data["mb2s"] + +			if addr <= sel_data["ip"] < top_addr: +				pair = self._pair_sel_ip +			elif addr <= sel_data["sp"] < top_addr: +				pair = self._pair_sel_sp +			elif top_addr > sel_data["mb1a"] and top_mb1a > addr: +				pair = self._pair_sel_mb1 +			elif top_addr > sel_data["mb2a"] and top_mb2a > addr: +				pair = self._pair_sel_mb2 + +		# No pair has been selected yet; select pair based on bit-flags. +		if not "pair" in locals(): +			if byte >= 0x80: +				pair = self._pair_ip +			elif byte >= 0x40: +				pair = self._pair_mbstart +			elif byte >= 0x20: +				pair = self._pair_alloc +			else: +				pair = self._pair_free + +		# Select symbol to represent instructions currently on cell. +		inst = byte % 32 + +		if self._zoom == 1: +			symb = self._printer.inst_list[inst][1] +		elif inst > 16: +			symb = ":" +		else: +			symb = "." + +		# Return tuple containing our post-redered cell. +		return symb, curses.color_pair(pair) + +	def _get_max_zoom(self): +		""" Calculate maximum needed zoom so that the entire world fits on the +		terminal window. +		""" +		max_zoom = 1 +		line_size = self._printer.size[1] - self.PADDING +		coverage = self._printer.size[0] * line_size + +		# We fix a maximum zoom level; otherwise, program may halt on extreme +		# zoom levels. +		while ( +			(coverage * max_zoom) < self._sim.lib.sal_mem_get_size() and +			max_zoom < 2 ** 16 +		): +			max_zoom *= 2 + +		return max_zoom + +	def _is_world_editable(self): +		""" For this to return True, printer's current page must be WORLD page. +		Additionally, the WORLD panel must be visible on the terminal window +		(i.e. curses.COLS > data_margin). +		""" +		correct_page = self._printer.current_page == "WORLD" +		correct_size = self._printer.size[1] > self.PADDING +		return correct_page and correct_size + +	def _get_line_area(self): +		""" Return amount of bytes contained in a printed WORLD line. +		""" +		line_size = self._printer.size[1] - self.PADDING +		line_area = self._zoom * line_size +		return line_area diff --git a/build/.keep b/build/.keep new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/build/.keep diff --git a/include/common.h b/include/common.h new file mode 100644 index 0000000..7386a34 --- /dev/null +++ b/include/common.h @@ -0,0 +1,19 @@ +/** +* @file common.h +* @author Paul Oliver +* +* This module controls the 'common pipe', which is the FIFO file through which +* communication between different simulations can occur. By calling SEND, +* processes may output local instructions through the pipe. These instructions +* may then be read by processes running on a different simulation instance. +*/ + +#ifndef SALIS_COMMON_H +#define SALIS_COMMON_H + +void _sal_comm_init(string pipe); +void _sal_comm_quit(void); +void _sal_comm_send(uint8 inst); +uint8 _sal_comm_receive(void); + +#endif diff --git a/include/evolver.h b/include/evolver.h new file mode 100644 index 0000000..b2ead10 --- /dev/null +++ b/include/evolver.h @@ -0,0 +1,38 @@ +/** +* @file evolver.h +* @author Paul Oliver +* +* This module controls all random events in Salis. At its heart lies a +* XOR-Shift pseudo-random number generator with 128 bits of state. It controls +* cosmic rays and rises simulation entropy whenever organisms 'eat' +* information. +*/ + +#ifndef SALIS_EVOLVER_H +#define SALIS_EVOLVER_H + +void _sal_evo_init(void); +void _sal_evo_quit(void); +void _sal_evo_load_from(FILE *file); +void _sal_evo_save_into(FILE *file); + +/** Get address where the last cosmic ray landed. +* @return Last address changed by a cosmic ray +*/ +SALIS_API uint32 sal_evo_get_last_changed_address(void); + +/** Get amount of random numbers generated during the last simulation cycle. +* @return Number of calls to the random number generator during the last cycle +*/ +SALIS_API uint32 sal_evo_get_calls_on_last_cycle(void); + +/** Access the internal state of the XOR-Shift random number generator. +* @param state_index Index of one of the 32 bit state-blocks [0-4] +* @return State of the 32 bit block +*/ +SALIS_API uint32 sal_evo_get_state(uint8 state_index); + +void _sal_evo_randomize_at(uint32 address); +void _sal_evo_cycle(void); + +#endif diff --git a/include/getter.h b/include/getter.h new file mode 100644 index 0000000..83f0664 --- /dev/null +++ b/include/getter.h @@ -0,0 +1,20 @@ +/** +* @file getter.h +* @author Paul Oliver +* +* We declare a helper macro for easy 'getting' of module state variables. Other +* similar, more specific macros are defined inside the module sources. Don't +* repeat yourself! :-) +*/ + +#ifndef SALIS_GETTER_H +#define SALIS_GETTER_H + +#define UINT32_GETTER(mod, name) \ +uint32 sal_##mod##_get_##name(void) \ +{ \ +	assert(g_is_init); \ +	return g_##name; \ +} + +#endif diff --git a/include/instset.h b/include/instset.h new file mode 100644 index 0000000..ab7bab0 --- /dev/null +++ b/include/instset.h @@ -0,0 +1,71 @@ +/** +* @file instset.h +* @author Paul Oliver +* +* Here we declare the complete instruction set of the Salis virtual machine. +* Additionally, some helper functions are declared for determining instruction +* type and validity. +*/ + +#ifndef SALIS_INSTSET_H +#define SALIS_INSTSET_H + +#define INST_COUNT 32 + +/** Salis instruction set. The 'SALIS_INST' macro and inline doc-comments help +* python parse this file. Don't edit these unless you know what you're doing! +*/ +enum { +	SALIS_INST NOP0, /**< . Template constructor */ +	SALIS_INST NOP1, /**< : Template constructor */ +	SALIS_INST MODA, /**< a Register modifier */ +	SALIS_INST MODB, /**< b Register modifier */ +	SALIS_INST MODC, /**< c Register modifier */ +	SALIS_INST MODD, /**< d Register modifier */ +	SALIS_INST JMPB, /**< ( Jump back to template complement */ +	SALIS_INST JMPF, /**< ) Jump forward to template complement */ +	SALIS_INST ADRB, /**< [ Search back for template complement */ +	SALIS_INST ADRF, /**< ] Search forward for template complement */ +	SALIS_INST MALB, /**< { Allocate backwards */ +	SALIS_INST MALF, /**< } Allocate forward */ +	SALIS_INST SWAP, /**< % Swap memory blocks */ +	SALIS_INST SPLT, /**< $ Split child memory block */ +	SALIS_INST INCN, /**< ^ Increment register */ +	SALIS_INST DECN, /**< v Decrement register */ +	SALIS_INST ZERO, /**< 0 Zero out register */ +	SALIS_INST UNIT, /**< 1 Place 1 on register */ +	SALIS_INST NOTN, /**< ! Negation operator */ +	SALIS_INST IFNZ, /**< ? Conditional operator */ +	SALIS_INST SUMN, /**< + Add two registers */ +	SALIS_INST SUBN, /**< - Subtract two registers */ +	SALIS_INST MULN, /**< * Multiply two registers */ +	SALIS_INST DIVN, /**< / Divide two registers */ +	SALIS_INST LOAD, /**< L Load instruction from memory */ +	SALIS_INST WRTE, /**< W Write instruction into memory */ +	SALIS_INST SEND, /**< S Send instruction to common pipe */ +	SALIS_INST RECV, /**< R Receive instruction from common pipe */ +	SALIS_INST PSHN, /**< # Push value to stack */ +	SALIS_INST POPN, /**< ~ Pop value from stack */ +	SALIS_INST EATB, /**< < Eat backwards */ +	SALIS_INST EATF  /**< > Eat forward */ +}; + +/** Determine if an unsigned integer contains a valid instruction. +* @param byte Any unsigned integer up to 32 bits +* @return Whether or nor integer contains a valid instruction +*/ +SALIS_API boolean sal_is_inst(uint32 word); + +/** Determine if instruction is a template constructor [NOP0-NOP1]. +* @param inst Must contain a valid instruction +* @return Whether or not instruction is a template constructor +*/ +SALIS_API boolean sal_is_template(uint32 inst); + +/** Determine if instruction a register modifier [MOD0-MOD3]. +* @param inst Must contain a valid instruction +* @return Whether or not instruction is a register modifier +*/ +SALIS_API boolean sal_is_mod(uint32 inst); + +#endif diff --git a/include/memory.h b/include/memory.h new file mode 100644 index 0000000..e7b97ee --- /dev/null +++ b/include/memory.h @@ -0,0 +1,134 @@ +/** +* @file memory.h +* @author Paul Oliver +* +* This module gives access to Salis memory. You can check the state of each +* byte (instruction and flags) at any time and also perform manual memory +* manipulations. +*/ + +#ifndef SALIS_MEMORY_H +#define SALIS_MEMORY_H + +#define IP_FLAG 0x80 +#define BLOCK_START_FLAG 0x40 +#define ALLOCATED_FLAG 0x20 +#define INSTRUCTION_MASK 0x1f + +void _sal_mem_init(uint32 order); +void _sal_mem_quit(void); +void _sal_mem_load_from(FILE *file); +void _sal_mem_save_into(FILE *file); + +/** Get memory order. +* @return Order of memory (memory_size == 1 << order) +*/ +SALIS_API uint32 sal_mem_get_order(void); + +/** Get memory size. +* @return Size of memory (memory_size == 1 << order) +*/ +SALIS_API uint32 sal_mem_get_size(void); + +/** Get amount of addresses with the IP flag set on them. +* @return Amount of addresses with the IP flag set +*/ +SALIS_API uint32 sal_mem_get_ip_count(void); + +/** Get amount of addresses with the memory-block-start flag set on them. +* @return Amount of addresses with the memory-block-start flag set +*/ +SALIS_API uint32 sal_mem_get_block_start_count(void); + +/** Get amount of addresses with the allocated flag set on them. +* @return Amount of addresses with the allocated flag set +*/ +SALIS_API uint32 sal_mem_get_allocated_count(void); + +/** Get memory capacity. +* @return Memory capacity (capacity == size / 2) +*/ +SALIS_API uint32 sal_mem_get_capacity(void); + +/** Get amount of addresses with a given instruction written on them. +* @param inst Instruction whose amount we want to count +* @return Amount of addresses with given instruction +*/ +SALIS_API uint32 sal_mem_get_inst_count(uint8 inst); + +/** Determine if memory is above its capacity. +* @return Memory is above capacity +*/ +SALIS_API boolean sal_mem_is_over_capacity(void); + +/** Check validity of address. +* @param address Address being queried +* @return Validity of address (validity == address < size) +*/ +SALIS_API boolean sal_mem_is_address_valid(uint32 address); + +/** Check if given address has the IP flag set. +* @param address Address being queried +* @return IP flag is set on this address +*/ +SALIS_API boolean sal_mem_is_ip(uint32 address); + +/** Check if given address has the memory-block-start flag set. +* @param address Address being queried +* @return Memory-block-start flag is set on this address +*/ +SALIS_API boolean sal_mem_is_block_start(uint32 address); + +/** Check if given address has the allocated flag set. +* @param address Address being queried +* @return Allocated flag is set on this address +*/ +SALIS_API boolean sal_mem_is_allocated(uint32 address); + +void _sal_mem_set_ip(uint32 address); +void _sal_mem_set_block_start(uint32 address); +void _sal_mem_set_allocated(uint32 address); +void _sal_mem_unset_ip(uint32 address); +void _sal_mem_unset_block_start(uint32 address); +void _sal_mem_unset_allocated(uint32 address); + +/** Get currently set flags at given address. +* @param address Address being queried +* @return Byte containing set flag bits +*/ +SALIS_API uint8 sal_mem_get_flags(uint32 address); + +/** Get current instruction at address. +* @param address Address being queried +* @return Instruction currently written at address +*/ +SALIS_API uint8 sal_mem_get_inst(uint32 address); + +/** Write instruction into address. +* @param address Address being set +* @param inst Instruction to write at given address +*/ +SALIS_API void sal_mem_set_inst(uint32 address, uint8 inst); + +/** Get current byte at address. +* @param address Address being queried +* @return Byte currently written at address (includes bit flags & instruction) +*/ +SALIS_API uint8 sal_mem_get_byte(uint32 address); + +/** Render a 1D image of a given block of memory. This is useful, as rendering +* directly in python would be too slow. We use openmp for multi-threaded image +* generation. +* +* @param origin Low bound of rendered image +* @param cell_size Amount of bytes per rendered pixel (cell) +* @param buff_size Amount of pixels (cells) to be generated +* @param buffer Pre-allocated buffer to store the rendered pixels into +*/ +SALIS_API void sal_mem_render_image( +	uint32 origin, uint32 cell_size, uint32 buff_size, uint8_p buffer +); + +void _sal_mem_cycle(void); + +#endif diff --git a/include/process.h b/include/process.h new file mode 100644 index 0000000..3723ad6 --- /dev/null +++ b/include/process.h @@ -0,0 +1,97 @@ +/** +* @file process.h +* @author Paul Oliver +* +* This module allows access to Salis processes, or procs. Procs are the actual +* organisms in the simulation. They consist of a virtual CPU with 4 registers +* and a stack of 8. The instruction pointer (IP) and seeker pointer (SP) +* coordinate the execution of all instructions. Organisms get rewarded or +* punished, depending on certain conditions. +*/ + +#ifndef SALIS_PROCESS_H +#define SALIS_PROCESS_H + +/** The Process data-structure. The 'SALIS_PROC_ELEMENT' macro helps python +* parse the struct, so don't change it! +*/ +struct Process +{ +	SALIS_PROC_ELEMENT uint32 mb1a; +	SALIS_PROC_ELEMENT uint32 mb1s; +	SALIS_PROC_ELEMENT uint32 mb2a; +	SALIS_PROC_ELEMENT uint32 mb2s; +	SALIS_PROC_ELEMENT uint32 reward; +	SALIS_PROC_ELEMENT uint32 punish; +	SALIS_PROC_ELEMENT uint32 ip; +	SALIS_PROC_ELEMENT uint32 sp; +	SALIS_PROC_ELEMENT uint32 rax; +	SALIS_PROC_ELEMENT uint32 rbx; +	SALIS_PROC_ELEMENT uint32 rcx; +	SALIS_PROC_ELEMENT uint32 rdx; +	SALIS_PROC_ELEMENT uint32 stack[8]; +}; + +typedef struct Process Process; + +void _sal_proc_init(void); +void _sal_proc_quit(void); +void _sal_proc_load_from(FILE *file); +void _sal_proc_save_into(FILE *file); + +/** Get process count. +* @return Amount of running (living) processes +*/ +SALIS_API uint32 sal_proc_get_count(void); + +/** Get reaper queue capacity. +* @return Currently allocated size of reaper queue +*/ +SALIS_API uint32 sal_proc_get_capacity(void); + +/** Get first process. +* @return Process currently on top of reaper queue +*/ +SALIS_API uint32 sal_proc_get_first(void); + +/** Get last process. +* @return Process currently on bottom of reaper queue (closest to death) +*/ +SALIS_API uint32 sal_proc_get_last(void); + +/** Get instructions executed on last cycle. +* @return Amount of executed instructions during the last cycle +*/ +SALIS_API uint32 sal_proc_get_instructions_executed(void); + +/** Check if process is currently free. +* @param proc_id ID of process whose status we want to check +* @return Status (either free or running) of the process with the given ID +*/ +SALIS_API boolean sal_proc_is_free(uint32 proc_id); + +/** Get process. +* @param proc_id ID of Process being queried +* @return A copy of the process with the given ID +*/ +SALIS_API Process sal_proc_get_proc(uint32 proc_id); + +/** Get process data. +* @param proc_id ID of Process being queried +* @param buffer Pre-allocated buffer to store data on [ > sizeof(Process)] +*/ +SALIS_API void sal_proc_get_proc_data(uint32 proc_id, uint32_p buffer); + +/** Create new process. +* @param address Address we want to allocate our process into +* @param mb1_size Size of the memory block we want to allocate for our process +*/ +SALIS_API void sal_proc_create(uint32 address, uint32 mb1_size); + +/** Kill process on bottom of reaper queue. +*/ +SALIS_API void sal_proc_kill(void); + +void _sal_proc_cycle(void); + +#endif diff --git a/include/salis.h b/include/salis.h new file mode 100644 index 0000000..8b261b1 --- /dev/null +++ b/include/salis.h @@ -0,0 +1,67 @@ +/** +* @file salis.h +* @author Paul Oliver +* +* Main header file for the Salis library. Loading this header imports all API +* modules and functions. It may be loaded from C or C++. +*/ + +#ifndef SALIS_H +#define SALIS_H + +#ifdef __cplusplus +	extern "C" { +#endif + +#include <types.h> +#include <instset.h> +#include <memory.h> +#include <evolver.h> +#include <common.h> +#include <process.h> + +/** Initialize Salis simulation. +* @param order Order of memory (memory_size == 1 << order) +* @param pipe Desired path and file name of common pipe +*/ +SALIS_API void sal_main_init(uint32 order, string pipe); + +/** Free resources and quit Salis. +*/ +SALIS_API void sal_main_quit(void); + +/** Load existing Salis simulation from saved file. +* @param file_name Path of the save file to be loaded +* @param pipe Desired path and file name of common pipe +*/ +SALIS_API void sal_main_load(string file_name, string pipe); + +/** Save Salis simulation to a file. +* @param file_name Path of the save file to be created +*/ +SALIS_API void sal_main_save(string file_name); + +/** Check if Salis simulation has been correctly initialized. +* @return Salis has been correctly initialized +*/ +SALIS_API boolean sal_main_is_init(void); + +/** Get current simulation cycle. +* @return Current simulation cycle +*/ +SALIS_API uint32 sal_main_get_cycle(void); + +/** Get current simulation epoch. +* @return Current simulation epoch (1 epoch == 2^32 cycles) +*/ +SALIS_API uint32 sal_main_get_epoch(void); + +/** Update simulation once. This will cycle all Salis modules and processes. +*/ +SALIS_API void sal_main_cycle(void); + +#ifdef __cplusplus +	} +#endif + +#endif diff --git a/include/types.h b/include/types.h new file mode 100644 index 0000000..3ae418f --- /dev/null +++ b/include/types.h @@ -0,0 +1,45 @@ +/** +* @file types.h +* @author Paul Oliver +* +* Declare main typedefs for the Salis library. Salis depends on fixed-width +* unsigned types being available. We use the limits header to define these in +* a C89 compliant way. Also, we typedef respective pointer types and a string +* type to aid in header parsing. +*/ + +#ifndef SALIS_TYPES_H +#define SALIS_TYPES_H + +#include <limits.h> + +#define UINT8_MAX 0xff +#define UINT32_MAX 0xffffffff + +#if UCHAR_MAX == UINT8_MAX +	typedef unsigned char uint8; +	typedef unsigned char *uint8_p; +#else +	#error "Cannot define uint8/uint8_p types!" +#endif + +#if ULONG_MAX == UINT32_MAX +	typedef unsigned long int uint32; +	typedef unsigned long int *uint32_p; +#elif UINT_MAX == UINT32_MAX +	typedef unsigned int uint32; +	typedef unsigned int *uint32_p; +#elif USHRT_MAX == UINT32_MAX +	typedef unsigned short int uint32; +	typedef unsigned short int *uint32_p; +#else +	#error "Cannot define uint32/uint32_p types!" +#endif + +typedef int boolean; +typedef const char *string; + +#define TRUE 1 +#define FALSE 0 + +#endif diff --git a/src/common.c b/src/common.c new file mode 100644 index 0000000..3653252 --- /dev/null +++ b/src/common.c @@ -0,0 +1,72 @@ +#include <assert.h> +#include <fcntl.h> +#include <sys/stat.h> +#include <unistd.h> +#include "types.h" +#include "instset.h" +#include "common.h" + +static boolean g_is_init; +static int g_file_desc; + +void _sal_comm_init(string pipe) +{ +	/* Initialize the common pipe. This module is the only one on Salis that +	makes use of Linux specific headers and types. If you want, feel free to +	port this code into other platforms (should be easy). If you do so, let me +	know and we can incorporate it into the Salis repository. +	*/ +	assert(!g_is_init); +	mkfifo(pipe, 0666); +	g_is_init = TRUE; + +	/* It's important to open the FIFO file in non-blocking mode, or else the +	simulators might halt if the pipe becomes empty. +	*/ +	g_file_desc = open(pipe, O_RDWR | O_NONBLOCK); +	assert(g_file_desc != -1); +} + +void _sal_comm_quit(void) +{ +	/* Close the common pipe FIFO file from within this instance. An empty pipe +	file will remain unless it gets manually deleted. +	*/ +	assert(g_is_init); +	close(g_file_desc); +	g_is_init = FALSE; +	g_file_desc = 0; +} + +void _sal_comm_send(uint8 inst) +{ +	/* Send a single byte (instruction) to the common pipe. This function is +	called by processes that execute the SEND instruction. Hopefully, some of +	them 'learn' to use this as an advantage. + +	In the future, I want to make the common pipe able to communicate across +	local networks (LANs) and over the Internet. +	*/ +	assert(g_is_init); +	assert(sal_is_inst(inst)); +	write(g_file_desc, &inst, 1); +} + +uint8 _sal_comm_receive(void) +{ +	/* Receive a single byte (instruction) from the common pipe. This function +	is called by processes that execute the RCVE instruction. If the pipe is +	empty, this function returns the NOP0 instruction. +	*/ +	uint8 inst; +	ssize_t res; +	assert(g_is_init); +	res = read(g_file_desc, &inst, 1); + +	if (res) { +		assert(sal_is_inst(inst)); +		return inst; +	} else { +		return NOP0; +	} +} diff --git a/src/evolver.c b/src/evolver.c new file mode 100644 index 0000000..e3b6ef7 --- /dev/null +++ b/src/evolver.c @@ -0,0 +1,132 @@ +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <time.h> +#include "types.h" +#include "getter.h" +#include "instset.h" +#include "memory.h" +#include "evolver.h" + +static boolean g_is_init; +static uint32 g_last_changed_address; +static uint32 g_calls_on_last_cycle; +static uint32 g_state[4]; + +void _sal_evo_init(void) +{ +	/* Start up the evolver module. We simply set the 128 bits into a random +	state by calling 'rand()'. +	*/ +	assert(!g_is_init); +	srand((uint32)time(NULL)); +	g_state[0] = rand(); +	g_state[1] = rand(); +	g_state[2] = rand(); +	g_state[3] = rand(); +	g_is_init = TRUE; +} + +void _sal_evo_quit(void) +{ +	/* Quit the evolver module. Reset everything back to zero. +	*/ +	assert(g_is_init); +	g_is_init = FALSE; +	g_last_changed_address = 0; +	g_calls_on_last_cycle = 0; +	memset(g_state, 0, sizeof(uint32) * 4); +} + +void _sal_evo_load_from(FILE *file) +{ +	/* Load evolver state from a binary file. +	*/ +	assert(!g_is_init); +	assert(file); +	fread(&g_is_init, sizeof(boolean), 1, file); +	fread(&g_last_changed_address, sizeof(uint32), 1, file); +	fread(&g_calls_on_last_cycle, sizeof(uint32), 1, file); +	fread(&g_state, sizeof(uint32), 4, file); +} + +void _sal_evo_save_into(FILE *file) +{ +	/* Save evolver state into a binary file. +	*/ +	assert(g_is_init); +	assert(file); +	fwrite(&g_is_init, sizeof(boolean), 1, file); +	fwrite(&g_last_changed_address, sizeof(uint32), 1, file); +	fwrite(&g_calls_on_last_cycle, sizeof(uint32), 1, file); +	fwrite(&g_state, sizeof(uint32), 4, file); +} + +/* Getter methods for the evolver module. +*/ +UINT32_GETTER(evo, last_changed_address) +UINT32_GETTER(evo, calls_on_last_cycle) + +uint32 sal_evo_get_state(uint8 state_index) +{ +	/* Get part of the evolver's internal state (32 bits of 128 total bits) as +	an unsigned int. +	*/ +	assert(g_is_init); +	assert(state_index < 4); +	return g_state[state_index]; +} + +static uint32 generate_random_number(void) +{ +	/* Generate a single 32 bit random number. This module makes use of the +	XOR-Shift pseudo-rng. We use XOR-Shift because it's extremely lightweight +	and fast, while providing quite good results. Find more info about it here: +	>>> https://en.wikipedia.org/wiki/Xorshift +	*/ +	uint32 tmp1; +	uint32 tmp2; +	assert(g_is_init); +	tmp2 = g_state[3]; +	tmp2 ^= tmp2 << 11; +	tmp2 ^= tmp2 >> 8; +	g_state[3] = g_state[2]; +	g_state[2] = g_state[1]; +	g_state[1] = tmp1 = g_state[0]; +	tmp2 ^= tmp1; +	tmp2 ^= tmp1 >> 19; +	g_state[0] = tmp2; +	g_calls_on_last_cycle++; +	return tmp2; +} + +void _sal_evo_randomize_at(uint32 address) +{ +	/* Place a random instruction into a given address. +	*/ +	uint8 inst; +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	inst = generate_random_number() % INST_COUNT; +	g_last_changed_address = address; +	sal_mem_set_inst(address, inst); +} + +void _sal_evo_cycle(void) +{ +	/* During each simulation cycle, a random 32 bit integer is generated. If +	this integer represents a 'valid' address in memory +	(i.e. new_rand < memory_size), this address becomes hit by a cosmic ray +	(randomized). This simple mutation scheme is enough to drive evolution in +	Salis. +	*/ +	uint32 address; +	assert(g_is_init); +	g_calls_on_last_cycle = 0; +	address = generate_random_number(); + +	if (sal_mem_is_address_valid(address)) { +		_sal_evo_randomize_at(address); +	} +} diff --git a/src/instset.c b/src/instset.c new file mode 100644 index 0000000..2ab127a --- /dev/null +++ b/src/instset.c @@ -0,0 +1,39 @@ +#include <assert.h> +#include "types.h" +#include "instset.h" + +boolean sal_is_inst(uint32 word) +{ +	/* Test if a given 32 bit integer contains a valid Salis instruction. +	*/ +	return word < INST_COUNT; +} + +static boolean is_in_between(uint32 inst, uint32 low, uint32 hi) +{ +	/* Test whether a Salis instruction lies within a given range. This is +	useful for identifying template instructions and/or register modifiers. +	*/ +	assert(sal_is_inst(inst)); +	assert(sal_is_inst(low)); +	assert(sal_is_inst(hi)); +	return (inst >= low) && (inst <= hi); +} + +boolean sal_is_template(uint32 inst) +{ +	/* Test whether a given instruction is a template element +	(i.e. NOP0 or NOP1). +	*/ +	assert(sal_is_inst(inst)); +	return is_in_between(inst, NOP0, NOP1); +} + +boolean sal_is_mod(uint32 inst) +{ +	/* Test whether a given instruction is a register modifier +	(i.e. MODA, MODB, MODC or MODD). +	*/ +	assert(sal_is_inst(inst)); +	return is_in_between(inst, MODA, MODD); +} diff --git a/src/memory.c b/src/memory.c new file mode 100644 index 0000000..c586eb0 --- /dev/null +++ b/src/memory.c @@ -0,0 +1,325 @@ +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "types.h" +#include "getter.h" +#include "instset.h" +#include "memory.h" + +#define MAX_ZOOM 0x10000 + +static boolean g_is_init; +static uint32 g_order; +static uint32 g_size; +static uint32 g_ip_count; +static uint32 g_block_start_count; +static uint32 g_allocated_count; +static uint32 g_capacity; +static uint32 g_inst_counter[INST_COUNT]; +static uint8_p g_memory; + +void _sal_mem_init(uint32 order) +{ +	/* Set memory module to its initial state. We calculate memory size based +	on its order (size = 1 << order) and allocate an array of such size. We +	also initialize the array completely to zero. +	*/ +	assert(!g_is_init); +	assert(order < 32); +	g_is_init = TRUE; +	g_order = order; +	g_size = 1 << g_order; +	g_capacity = g_size / 2; +	g_inst_counter[0] = g_size; +	g_memory = calloc(g_size, 1); +	assert(g_memory); +} + +void _sal_mem_quit(void) +{ +	/* Reset memory module entirely back to zero. That way, we can load several +	simulations without restarting the application entirely. +	*/ +	assert(g_is_init); +	free(g_memory); +	g_is_init = FALSE; +	g_order = 0; +	g_size = 0; +	g_ip_count = 0; +	g_block_start_count = 0; +	g_allocated_count = 0; +	g_capacity = 0; +	memset(g_inst_counter, 0, sizeof(uint32) * INST_COUNT); +	g_memory = NULL; +} + +void _sal_mem_load_from(FILE *file) +{ +	/* Load memory state from a binary file. +	*/ +	assert(!g_is_init); +	assert(file); +	fread(&g_is_init, sizeof(boolean), 1, file); +	fread(&g_order, sizeof(uint32), 1, file); +	fread(&g_size, sizeof(uint32), 1, file); +	fread(&g_ip_count, sizeof(uint32), 1, file); +	fread(&g_block_start_count, sizeof(uint32), 1, file); +	fread(&g_allocated_count, sizeof(uint32), 1, file); +	fread(&g_capacity, sizeof(uint32), 1, file); +	fread(g_inst_counter, sizeof(uint32), INST_COUNT, file); +	g_memory = calloc(g_size, sizeof(uint8)); +	assert(g_memory); +	fread(g_memory, sizeof(uint8), g_size, file); +} + +void _sal_mem_save_into(FILE *file) +{ +	/* Save memory state to a binary file. +	*/ +	assert(g_is_init); +	assert(file); +	fwrite(&g_is_init, sizeof(boolean), 1, file); +	fwrite(&g_order, sizeof(uint32), 1, file); +	fwrite(&g_size, sizeof(uint32), 1, file); +	fwrite(&g_ip_count, sizeof(uint32), 1, file); +	fwrite(&g_block_start_count, sizeof(uint32), 1, file); +	fwrite(&g_allocated_count, sizeof(uint32), 1, file); +	fwrite(&g_capacity, sizeof(uint32), 1, file); +	fwrite(g_inst_counter, sizeof(uint32), INST_COUNT, file); +	fwrite(g_memory, sizeof(uint8), g_size, file); +} + +/* Getter methods for the memory module. +*/ +UINT32_GETTER(mem, order) +UINT32_GETTER(mem, size) +UINT32_GETTER(mem, ip_count) +UINT32_GETTER(mem, block_start_count) +UINT32_GETTER(mem, allocated_count) +UINT32_GETTER(mem, capacity) + +uint32 sal_mem_get_inst_count(uint8 inst) +{ +	/* Return number of times a certain instruction appears in memory. The +	instruction counter gets updated dynamically during each cycle. +	*/ +	assert(g_is_init); +	assert(sal_is_inst(inst)); +	return g_inst_counter[inst]; +} + +boolean sal_mem_is_over_capacity(void) +{ +	/* Check if memory is filled above 50%. If so, old organisms will be popped +	out of the reaper queue! +	*/ +	assert(g_is_init); +	return g_allocated_count > g_capacity; +} + +boolean sal_mem_is_address_valid(uint32 address) +{ +	/* Check if given address is valid. +	*/ +	assert(g_is_init); +	return address < g_size; +} + +/* We declare a standard macro to test whether a specific FLAG is set on a given +byte. Remember, a Salis byte contains a 5 bit instruction (of 32 possible) plus +3 flags: IP, BLOCK_START and ALLOCATED. These flags help organisms identify +where there is free memory space to reproduce on, and tell the python printer +module how to color each byte. +*/ +#define FLAG_TEST(name, flag) \ +boolean sal_mem_is_##name(uint32 address) \ +{ \ +	assert(g_is_init); \ +	assert(sal_mem_is_address_valid(address)); \ +	return !!(g_memory[address] & flag); \ +} + +FLAG_TEST(ip, IP_FLAG) +FLAG_TEST(block_start, BLOCK_START_FLAG) +FLAG_TEST(allocated, ALLOCATED_FLAG) + +/* We define a standard macro for 'setting' one of the 3 FLAGS into a given +memory address. +*/ +#define FLAG_SETTER(name, flag) \ +void _sal_mem_set_##name(uint32 address) \ +{ \ +	assert(g_is_init); \ +	assert(sal_mem_is_address_valid(address)); \ +\ +	if (!sal_mem_is_##name(address)) { \ +		g_memory[address] ^= flag; \ +		g_##name##_count++; \ +	} \ +} + +FLAG_SETTER(ip, IP_FLAG) +FLAG_SETTER(block_start, BLOCK_START_FLAG) +FLAG_SETTER(allocated, ALLOCATED_FLAG) + +/* We define a standard macro for 'unsetting' one of the 3 FLAGS into a given +memory address. +*/ +#define FLAG_UNSETTER(name, flag) \ +void _sal_mem_unset_##name(uint32 address) \ +{ \ +	assert(g_is_init); \ +	assert(sal_mem_is_address_valid(address)); \ +\ +	if (sal_mem_is_##name(address)) { \ +		g_memory[address] ^= flag; \ +		g_##name##_count--; \ +	} \ +} + +FLAG_UNSETTER(ip, IP_FLAG) +FLAG_UNSETTER(block_start, BLOCK_START_FLAG) +FLAG_UNSETTER(allocated, ALLOCATED_FLAG) + +uint8 sal_mem_get_flags(uint32 address) +{ +	/* Get FLAG bits currently set on a specified address (byte). These may be +	queried by using a bitwise 'and' operator against the returned byte. +	*/ +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	return g_memory[address] & ~INSTRUCTION_MASK; +} + +uint8 sal_mem_get_inst(uint32 address) +{ +	/* Get instruction currently set on a specified address (byte), with the +	FLAG bits turned off. +	*/ +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	return g_memory[address] & INSTRUCTION_MASK; +} + +void sal_mem_set_inst(uint32 address, uint8 inst) +{ +	/* Set instruction at given address. This is useful when performing manual +	memory manipulations (like compiling organism genomes). +	*/ +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	assert(sal_is_inst(inst)); +	g_inst_counter[sal_mem_get_inst(address)]--; +	g_memory[address] &= ~INSTRUCTION_MASK; +	g_memory[address] |= inst; +	g_inst_counter[inst]++; +} + +uint8 sal_mem_get_byte(uint32 address) +{ +	/* Get unadulterated byte at given address. This could be used, for +	example, to render nice images of the memory state. +	*/ +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	return g_memory[address]; +} + +void sal_mem_render_image( +	uint32 origin, uint32 cell_size, uint32 buff_size, uint8_p buffer +) { +	/* Render a 1D image of a given section of memory, at a given resolution +	(zoom) and store it in a pre-allocated 'buffer'. + +	On the Salis python handler we draw memory as a 1D 'image' on the WORLD +	page. If we were to render this image directly on python, it would be +	excruciatingly slow, as we have to iterate over large areas of memory! +	Therefore, this memory module comes with a built-in, super fast renderer. +	*/ +	uint32 i; +	assert(g_is_init); +	assert(sal_mem_is_address_valid(origin)); +	assert(cell_size); +	assert(cell_size <= MAX_ZOOM); +	assert(buff_size); +	assert(buffer); + +	/* We make use of openmp for multi-threaded looping. This allows even +	faster render times, wherever openmp is supported. +	*/ +	#pragma omp parallel for +	for (i = 0; i < buff_size; i++) { +		uint32 j; +		uint32 flag_sum = 0; +		uint32 inst_sum = 0; +		uint32 cell_addr = origin + (i * cell_size); + +		for (j = 0; j < cell_size; j++) { +			uint32 address = j + cell_addr; + +			if (sal_mem_is_address_valid(address)) { +				flag_sum |= sal_mem_get_flags(address); +				inst_sum += sal_mem_get_inst(address); +			} +		} + +		buffer[i] = (uint8)(inst_sum / cell_size); +		buffer[i] |= (uint8)(flag_sum); +	} +} + +static boolean inst_count_is_correct(void) +{ +	/* Check that the instruction counter is in a valid state +	(i.e. SUM inst_counter[0..(INST_COUNT - 1)] == memory_size). +	*/ +	uint32 i; +	uint32 sum = 0; +	assert(g_is_init); + +	for (i = 0; i < INST_COUNT; i++) { +		assert(g_inst_counter[i] <= sal_mem_get_size()); +		sum += g_inst_counter[i]; +	} + +	return sum == g_size; +} + +static boolean module_is_valid(void) +{ +	/* Check for validity of memory module. This function only gets called when +	Salis is running in debug mode. It makes Salis **very** slow in comparison +	to when running optimized, but it is also **very** useful for debugging! +	*/ +	uint32 bidx; +	uint32 ip_count = 0; +	uint32 block_start_count = 0; +	uint32 allocated_count = 0; +	assert(g_is_init); +	assert(g_capacity <= g_size / 2); +	assert(inst_count_is_correct()); + +	/* Iterate through all memory, counting the flags set on each address. We +	then compare the sum to the flag counters to assert module validity. +	*/ +	for (bidx = 0; bidx < g_size; bidx++) { +		if (sal_mem_is_ip(bidx)) ip_count++; +		if (sal_mem_is_block_start(bidx)) block_start_count++; +		if (sal_mem_is_allocated(bidx)) allocated_count++; +	} + +	assert(ip_count == g_ip_count); +	assert(block_start_count == g_block_start_count); +	assert(allocated_count == g_allocated_count); +	return TRUE; +} + +void _sal_mem_cycle(void) +{ +	/* Cycle memory module. Simply assert validity when running in debug mode. +	When running optimized, this function does nothing. +	*/ +	assert(g_is_init); +	assert(module_is_valid()); +} diff --git a/src/process.c b/src/process.c new file mode 100644 index 0000000..8d500ae --- /dev/null +++ b/src/process.c @@ -0,0 +1,1488 @@ +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "types.h" +#include "getter.h" +#include "instset.h" +#include "memory.h" +#include "evolver.h" +#include "common.h" +#include "process.h" + +static boolean g_is_init; +static uint32 g_count; +static uint32 g_capacity; +static uint32 g_first; +static uint32 g_last; +static uint32 g_instructions_executed; +static Process *g_procs; + +void _sal_proc_init(void) +{ +	/* Initialize process module to its initial state. We initialize the reaper +	queue with a capacity of 1. 'First' and 'last' organism pointers are +	initialized to (uint32)-1 (to indicate they point to no organism, as no +	organism exists yet). +	*/ +	assert(!g_is_init); +	g_is_init = TRUE; +	g_capacity = 1; +	g_first = UINT32_MAX; +	g_last = UINT32_MAX; +	g_procs = calloc(g_capacity, sizeof(Process)); +	assert(g_procs); +} + +void _sal_proc_quit(void) +{ +	/* Reset process module back to zero; free up the process queue. +	*/ +	assert(g_is_init); +	free(g_procs); +	g_is_init = FALSE; +	g_count = 0; +	g_capacity = 0; +	g_first = 0; +	g_last = 0; +	g_instructions_executed = 0; +	g_procs = NULL; +} + +void _sal_proc_load_from(FILE *file) +{ +	/* Load process module state from a binary file. +	*/ +	assert(!g_is_init); +	assert(file); +	fread(&g_is_init, sizeof(boolean), 1, file); +	fread(&g_count, sizeof(uint32), 1, file); +	fread(&g_capacity, sizeof(uint32), 1, file); +	fread(&g_first, sizeof(uint32), 1, file); +	fread(&g_last, sizeof(uint32), 1, file); +	fread(&g_instructions_executed, sizeof(uint32), 1, file); +	g_procs = calloc(g_capacity, sizeof(Process)); +	assert(g_procs); +	fread(g_procs, sizeof(Process), g_capacity, file); +} + +void _sal_proc_save_into(FILE *file) +{ +	/* Save process module state to a binary file. +	*/ +	assert(g_is_init); +	assert(file); +	fwrite(&g_is_init, sizeof(boolean), 1, file); +	fwrite(&g_count, sizeof(uint32), 1, file); +	fwrite(&g_capacity, sizeof(uint32), 1, file); +	fwrite(&g_first, sizeof(uint32), 1, file); +	fwrite(&g_last, sizeof(uint32), 1, file); +	fwrite(&g_instructions_executed, sizeof(uint32), 1, file); +	fwrite(g_procs, sizeof(Process), g_capacity, file); +} + +/* Getter methods for the process module. +*/ +UINT32_GETTER(proc, count) +UINT32_GETTER(proc, capacity) +UINT32_GETTER(proc, first) +UINT32_GETTER(proc, last) +UINT32_GETTER(proc, instructions_executed) + +boolean sal_proc_is_free(uint32 proc_id) +{ +	/* In Salis, the reaper queue is implemented as a circular queue. Thus, at +	any given time, a process ID (which actually denotes a process 'address' +	or, more correctly, a process 'container address') might contain a living +	process or be empty. This function checks for the 'living' state of a given +	process ID. +	*/ +	assert(g_is_init); +	assert(proc_id < g_capacity); + +	if (!g_procs[proc_id].mb1s) { +		/* When running in debug mode, we make sure that non-living processes +		are completely set to zero, as this is the expected state. +		*/ +		#ifndef NDEBUG +			Process dummy_proc; +			memset(&dummy_proc, 0, sizeof(Process)); +			assert(!memcmp(&dummy_proc, &g_procs[proc_id], sizeof(Process))); +		#endif + +		return TRUE; +	} + +	return FALSE; +} + +Process sal_proc_get_proc(uint32 proc_id) +{ +	/* Get a **copy** (not a reference) of the process with the given ID. Note, +	this might be a non-living process. +	*/ +	assert(g_is_init); +	assert(proc_id < g_capacity); +	return g_procs[proc_id]; +} + +void sal_proc_get_proc_data(uint32 proc_id, uint32_p buffer) +{ +	/* Get a **copy** (not a reference) of the process with the given ID +	(represented as a string of 32 bit integers) written into the given buffer. +	The buffer must be pre-allocated to a large enough size +	(i.e. malloc(sizeof(Process))). Note, copied process might be in a +	non-living state. +	*/ +	assert(g_is_init); +	assert(proc_id < g_capacity); +	assert(buffer); +	memcpy(buffer, &g_procs[proc_id], sizeof(Process)); +} + +static boolean block_is_free_and_valid(uint32 address, uint32 size) +{ +	/* Iterate all addresses in the given memory block and check that they lie +	within memory bounds and have the ALLOCATED flag unset. +	*/ +	uint32 offset; + +	for (offset = 0; offset < size; offset++) { +		uint32 off_addr = offset + address; +		if (!sal_mem_is_address_valid(off_addr)) return FALSE; +		if (sal_mem_is_allocated(off_addr)) return FALSE; + +		/* Deallocated addresses must have the BLOCK_START flag unset as well. +		*/ +		assert(!sal_mem_is_block_start(off_addr)); +	} + +	return TRUE; +} + +static void realloc_queue(uint32 queue_lock) +{ +	/* Reallocate reaper queue into a new circular queue with double the +	capacity. This function gets called whenever the reaper queue fills up +	with new organisms. + +	A queue_lock parameter may be provided, which 'centers' the reallocation on +	a given process ID. This means that, after reallocating the queue, the +	process with that ID will keep still have the same ID on the new queue. +	*/ +	uint32 new_capacity; +	Process *new_queue; +	uint32 fwrd_idx; +	uint32 back_idx; +	assert(g_is_init); +	assert(g_count == g_capacity); +	assert(queue_lock < g_capacity); +	new_capacity = g_capacity * 2; +	new_queue = calloc(new_capacity, sizeof(Process)); +	assert(new_queue); +	fwrd_idx = queue_lock; +	back_idx = (queue_lock - 1) % new_capacity; + +	/* Copy all organisms that lie forward from queue lock. +	*/ +	while (TRUE) { +		uint32 old_idx = fwrd_idx % g_capacity; +		memcpy(&new_queue[fwrd_idx], &g_procs[old_idx], sizeof(Process)); + +		if (old_idx == g_last) { +			g_last = fwrd_idx; +			break; +		} else { +			fwrd_idx++; +		} +	} + +	/* Copy all organisms that lie backwards from queue lock, making sure to +	loop around the queue (with modulo '%') whenever the process index goes +	below zero. +	*/ +	if (queue_lock != g_first) { +		while (TRUE) { +			uint32 old_idx = back_idx % g_capacity; +			memcpy(&new_queue[back_idx], &g_procs[old_idx], sizeof(Process)); + +			if (old_idx == g_first) { +				g_first = back_idx; +				break; +			} else { +				back_idx--; +				back_idx %= new_capacity; +			} +		} +	} + +	/* Free old reaper queue and re-link global pointer to new queue. +	*/ +	free(g_procs); +	g_capacity = new_capacity; +	g_procs = new_queue; +} + +static uint32 get_new_proc_from_queue(uint32 queue_lock) +{ +	/* Retrieve an unoccupied process ID from the reaper queue. This function +	gets called whenever a new organism is generated (born). +	*/ +	assert(g_is_init); + +	/* If reaper queue is full, reallocate to double its current size. +	*/ +	if (g_count == g_capacity) { +		realloc_queue(queue_lock); +	} + +	g_count++; + +	if (g_count == 1) { +		g_first = 0; +		g_last = 0; +		return 0; +	} else { +		g_last++; +		g_last %= g_capacity; +		return g_last; +	} +} + +static void proc_create( +	uint32 address, uint32 size, uint32 queue_lock, +	boolean set_ip, boolean allocate +) { +	/* Give birth to a new process! We must specify the address and size of the +	new organism. +	*/ +	uint32 pidx; +	assert(g_is_init); +	assert(sal_mem_is_address_valid(address)); +	assert(sal_mem_is_address_valid(address + size - 1)); + +	/* When organisms are generated manually (by an user), we must set the IP +	flag on the first byte of its owned memory. When organisms replicate by +	themselves, we don't set the flag, as it gets set at the end of the module +	cycle. Take a look at the '_sal_proc_cycle()' function for more info. +	*/ +	if (set_ip) { +		_sal_mem_set_ip(address); +	} + +	/* When organisms are generated manually (by an user), we must explicitly +	allocate its entire memory block. When organisms replicate by themselves, +	we assume they have already allocated the child's memory, so we don't need +	to do it here. +	*/ +	if (allocate) { +		uint32 offset; +		assert(block_is_free_and_valid(address, size)); +		_sal_mem_set_block_start(address); + +		for (offset = 0; offset < size; offset++) { +			uint32 off_addr = offset + address; +			_sal_mem_set_allocated(off_addr); +		} +	} + +	/* Get a new process ID for the child process. Also, set initial state of +	the child process data structure. +	*/ +	pidx = get_new_proc_from_queue(queue_lock); +	g_procs[pidx].mb1a = address; +	g_procs[pidx].mb1s = size; +	g_procs[pidx].ip = address; +	g_procs[pidx].sp = address; +} + +void sal_proc_create(uint32 address, uint32 mb1s) +{ +	/* API function to create a new process. Memory address and size of new +	process must be provided. +	*/ +	assert(g_is_init); +	assert(block_is_free_and_valid(address, mb1s)); +	proc_create(address, mb1s, 0, TRUE, TRUE); +} + +static void free_memory_block(uint32 address, uint32 size) +{ +	/* Deallocate a memory block. This includes unsetting the BLOCK_START flag +	on the first byte. +	*/ +	uint32 offset; +	assert(sal_mem_is_address_valid(address)); +	assert(sal_mem_is_address_valid(address + size - 1)); +	assert(sal_mem_is_block_start(address)); +	assert(size); +	_sal_mem_unset_block_start(address); + +	for (offset = 0; offset < size; offset++) { +		/* Iterate all addresses in block and unset the ALLOCATED flag in them. +		*/ +		uint32 off_addr = offset + address; +		assert(sal_mem_is_allocated(off_addr)); +		assert(!sal_mem_is_block_start(off_addr)); +		_sal_mem_unset_allocated(off_addr); +	} +} + +static void free_memory_owned_by(uint32 pidx) +{ +	/* Free memory specifically owned by the process with the given ID. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	free_memory_block(g_procs[pidx].mb1a, g_procs[pidx].mb1s); + +	if (g_procs[pidx].mb2s) { +		/* If process owns a child memory block, free it as well. +		*/ +		free_memory_block(g_procs[pidx].mb2a, g_procs[pidx].mb2s); +	} +} + +static void proc_kill(boolean reset_ips) +{ +	/* Kill process on bottom of reaper queue (the oldest process). +	*/ +	assert(g_is_init); +	assert(g_count); +	assert(g_first != UINT32_MAX); +	assert(g_last != UINT32_MAX); +	assert(!sal_proc_is_free(g_first)); + +	/* When called manually by an user, we must clear and reset the IP flags of +	all processes in order to preserve module validity. +	*/ +	if (reset_ips) { +		_sal_mem_unset_ip(g_procs[g_first].ip); +	} + +	/* Free up owned memory and reset process data structure back to zero. +	*/ +	free_memory_owned_by(g_first); +	memset(&g_procs[g_first], 0, sizeof(Process)); +	g_count--; + +	if (g_first == g_last) { +		g_first = UINT32_MAX; +		g_last = UINT32_MAX; +	} else { +		g_first++; +		g_first %= g_capacity; +	} + +	/* Reset IP flags of all living processes. We use openmp to do this faster. +	*/ +	if (reset_ips) { +		uint32 pidx; + +		#pragma omp parallel for +		for (pidx = 0; pidx < g_capacity; pidx++) { +			if (!sal_proc_is_free(pidx)) { +				_sal_mem_set_ip(g_procs[pidx].ip); +			} +		} +	} +} + +void sal_proc_kill(void) +{ +	/* API function to kill a process. Make sure that at least one process is +	alive, or 'assert()' will fail. +	*/ +	assert(g_is_init); +	assert(g_count); +	assert(g_first != UINT32_MAX); +	assert(g_last != UINT32_MAX); +	assert(!sal_proc_is_free(g_first)); +	proc_kill(TRUE); +} + +static boolean block_is_allocated(uint32 address, uint32 size) +{ +	/* Assert that a given memory block is fully allocated. +	*/ +	uint32 offset; +	assert(g_is_init); + +	for (offset = 0; offset < size; offset++) { +		uint32 off_addr = offset + address; +		assert(sal_mem_is_address_valid(off_addr)); +		assert(sal_mem_is_allocated(off_addr)); +	} + +	return TRUE; +} + +static boolean proc_is_valid(uint32 pidx) +{ +	/* Assert that the process with the given ID is in a valid state. This +	means that all of its owned memory must be allocated and that the proper +	flags are set in place. IP and SP must be located in valid addresses. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); + +	if (!sal_proc_is_free(pidx)) { +		assert(sal_mem_is_address_valid(g_procs[pidx].ip)); +		assert(sal_mem_is_address_valid(g_procs[pidx].sp)); +		assert(sal_mem_is_block_start(g_procs[pidx].mb1a)); +		assert(sal_mem_is_ip(g_procs[pidx].ip)); +		assert(block_is_allocated(g_procs[pidx].mb1a, g_procs[pidx].mb1s)); + +		if (g_procs[pidx].mb2s) { +			assert(sal_mem_is_block_start(g_procs[pidx].mb2a)); +			assert(block_is_allocated(g_procs[pidx].mb2a, g_procs[pidx].mb2s)); +		} +	} + +	return TRUE; +} + +static boolean module_is_valid(void) +{ +	/* Check for validity of process module. This function only gets called +	when Salis is running in debug mode. It makes Salis **very** slow in +	comparison to when running optimized, but it is also **very** useful for +	debugging! +	*/ +	uint32 pidx; +	uint32 alloc_count = 0; +	uint32 block_count = 0; +	assert(g_is_init); +	assert(g_count >= sal_mem_get_ip_count()); + +	/* Check that each individual process is in a valid state. We can do this +	in a multi-threaded way. +	*/ +	#pragma omp parallel for +	for (pidx = 0; pidx < g_capacity; pidx++) { +		assert(proc_is_valid(pidx)); +	} + +	/* Iterate all processes, counting their memory blocks and adding up their +	memory block sizes. At the end, we compare the sums to the flag counters of +	the memory module. +	*/ +	for (pidx = 0; pidx < g_capacity; pidx++) { +		if (!sal_proc_is_free(pidx)) { +			alloc_count += g_procs[pidx].mb1s; +			block_count++; + +			if (g_procs[pidx].mb2s) { +				assert(g_procs[pidx].mb1a != g_procs[pidx].mb2a); +				alloc_count += g_procs[pidx].mb2s; +				block_count++; +			} +		} +	} + +	assert(block_count == sal_mem_get_block_start_count()); +	assert(alloc_count == sal_mem_get_allocated_count()); +	return TRUE; +} + +static void toggle_ip_flag(void (*toggler)(uint32 address)) +{ +	/* At the start of each process module cycle, all memory addresses with the +	IP flag set get their IP flag turned off. Once all processes finish +	executing, the IP flags are turned on again on all addresses pointed by +	'g_procs[pidx].ip'. I've found this is the easiest way to preserve +	correctness, given that more than one process can have their IPs pointed to +	the same address. + +	This function simply iterates through all processes, setting the IP flag on +	or off on the address pointed to by their IP. +	*/ +	uint32 pidx; +	assert(g_is_init); + +	for (pidx = 0; pidx < g_capacity; pidx++) { +		if (!sal_proc_is_free(pidx)) { +			toggler(g_procs[pidx].ip); +		} +	} +} + +static void on_fault(uint32 pidx) +{ +	/* Organisms get punished whenever they execute an invalid instruction +	(commit a 'fault') by having the halt one simulation cycle. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	g_procs[pidx].punish = 1; +} + +static void increment_ip(uint32 pidx) +{ +	/* After executing each instruction, increment the given organism's IP to +	the next valid address. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (sal_mem_is_address_valid(g_procs[pidx].ip + 1)) { +		g_procs[pidx].ip++; +	} + +	/* Wherever IP goes, SP follows. :P +	*/ +	g_procs[pidx].sp = g_procs[pidx].ip; +} + +static boolean are_templates_complements(uint32 source, uint32 complement) +{ +	/* Check whether 2 templates are complements. Templates are introduced in +	Salis-2.0 and they function in the same way as templates in the original +	Tierra. They consist of string of NOP0 and NOP1 instructions. + +	We say that templates are complements whenever one is a 'negation' of +	another (i.e. they are reverse copies of each other). So, on the following +	example, the top template would be the complement of the bottom template. + +	>>> NOP0 - NOP1 - NOP1 +	>>> NOP1 - NOP0 - NOP0 + +	This function looks into 2 given addresses in memory and checks whether +	there are complementing templates on those addresses. +	*/ +	assert(g_is_init); +	assert(sal_mem_is_address_valid(source)); +	assert(sal_mem_is_address_valid(complement)); +	assert(sal_is_template(sal_mem_get_inst(source))); + +	while ( +		sal_mem_is_address_valid(source) && +		sal_is_template(sal_mem_get_inst(source)) +	) { +		/* Iterate address by address, checking complementarity on each +		consecutive byte pair. +		*/ +		uint8 inst_src; +		uint8 inst_comp; + +		/* If complement head moves to an invalid address, complementarity +		fails. +		*/ +		if (!sal_mem_is_address_valid(complement)) { +			return FALSE; +		} + +		inst_src = sal_mem_get_inst(source); +		inst_comp = sal_mem_get_inst(complement); +		assert(inst_src == NOP0 || inst_src == NOP1); + +		if (inst_src == NOP0 && inst_comp != NOP1) { +			return FALSE; +		} + +		if (inst_src == NOP1 && inst_comp != NOP0) { +			return FALSE; +		} + +		source++; +		complement++; +	} + +	/* If we get to the end of a template in the source head, and target has +	been complementary all the way through, we consider these blocks of memory +	'complements'. +	*/ +	return TRUE; +} + +static void increment_sp(uint32 pidx, boolean forward) +{ +	/* Increment or decrement SP to the next valid address. This function gets +	called by organisms during jumps, searches, etc. (i.e. whenever the seeker +	pointer gets sent on a 'mission'). +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (forward && sal_mem_is_address_valid(g_procs[pidx].sp + 1)) { +		g_procs[pidx].sp++; +	} + +	if (!forward && sal_mem_is_address_valid(g_procs[pidx].sp - 1)) { +		g_procs[pidx].sp--; +	} +} + +static boolean jump_seek(uint32 pidx, boolean forward) +{ +	/* Search (via the seeker pointer) for template to jump into. This gets +	called by organisms each cycle during a JMP instruction. Only when a valid +	template is found, will this function return TRUE. Otherwise it will return +	FALSE, signaling the calling process that a template has not yet been +	found. +	*/ +	uint32 next_addr; +	uint8 next_inst; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	next_addr = g_procs[pidx].ip + 1; + +	/* This function causes a 'fault' when there is no template right in front +	of the caller organism's instruction pointer. +	*/ +	if (!sal_mem_is_address_valid(next_addr)) { +		on_fault(pidx); +		increment_ip(pidx); +		return FALSE; +	} + +	next_inst = sal_mem_get_inst(next_addr); + +	if (!sal_is_template(next_inst)) { +		on_fault(pidx); +		increment_ip(pidx); +		return FALSE; +	} + +	/* Check for complementarity. Increment seeker pointer if template has not +	been found yet. +	*/ +	if (are_templates_complements(next_addr, g_procs[pidx].sp)) { +		return TRUE; +	} + +	increment_sp(pidx, forward); +	return FALSE; +} + +static void jump(uint32 pidx) +{ +	/* This gets called when an organism has finally found a template to jump +	into (see function above). Only when in debug mode, we make sure that the +	entire jump operation has been performed in a valid way. +	*/ +	#ifndef NDEBUG +		uint32 next_addr; +		uint8 next_inst; +		uint8 sp_inst; +		assert(g_is_init); +		assert(pidx < g_capacity); +		assert(!sal_proc_is_free(pidx)); +		next_addr = g_procs[pidx].ip + 1; +		assert(sal_mem_is_address_valid(next_addr)); +		next_inst = sal_mem_get_inst(next_addr); +		sp_inst = sal_mem_get_inst(g_procs[pidx].sp); +		assert(sal_is_template(next_inst)); +		assert(sal_is_template(sp_inst)); +		assert(are_templates_complements(next_addr, g_procs[pidx].sp)); +	#endif + +	g_procs[pidx].ip = g_procs[pidx].sp; +} + +static boolean addr_seek(uint32 pidx, boolean forward) +{ +	/* Search (via the seeker pointer) for template address in memory. This +	gets called by organisms each cycle during a ADR instruction. Only when a +	valid template is found, will this function return TRUE. Otherwise it will +	return FALSE, signaling the calling process that a template has not yet +	been found. */ +	uint32 next1_addr; +	uint32 next2_addr; +	uint8 next1_inst; +	uint8 next2_inst; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	next1_addr = g_procs[pidx].ip + 1; +	next2_addr = g_procs[pidx].ip + 2; + +	/* This function causes a 'fault' when there is no register modifier right +	in front of the caller organism's instruction pointer, and a template just +	after that. +	*/ +	if ( +		!sal_mem_is_address_valid(next1_addr) || +		!sal_mem_is_address_valid(next2_addr) +	) { +		on_fault(pidx); +		increment_ip(pidx); +		return FALSE; +	} + +	next1_inst = sal_mem_get_inst(next1_addr); +	next2_inst = sal_mem_get_inst(next2_addr); + +	if ( +		!sal_is_mod(next1_inst) || +		!sal_is_template(next2_inst) +	) { +		on_fault(pidx); +		increment_ip(pidx); +		return FALSE; +	} + +	/* Check for complementarity. Increment seeker pointer if template has not +	been found yet. +	*/ +	if (are_templates_complements(next2_addr, g_procs[pidx].sp)) { +		return TRUE; +	} + +	increment_sp(pidx, forward); +	return FALSE; +} + +static boolean get_register_pointers( +	uint32 pidx, uint32_p *regs, uint32 reg_count +) { +	/* This function is used to get pointers to a calling organism registers. +	Specifically, registers returned are those that will be used when executing +	the caller organism's current instruction. +	*/ +	uint32 ridx; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	assert(regs); +	assert(reg_count); +	assert(reg_count < 4); + +	/* Iterate 'reg_count' number of instructions forward from the IP, noting +	down all found register modifiers. If less than 'reg_count' modifiers are +	found, this function returns FALSE (triggering a 'fault'). +	*/ +	for (ridx = 0; ridx < reg_count; ridx++) { +		uint32 mod_addr = g_procs[pidx].ip + 1 + ridx; + +		if ( +			!sal_mem_is_address_valid(mod_addr) || +			!sal_is_mod(sal_mem_get_inst(mod_addr)) +		) { +			return FALSE; +		} + +		switch (sal_mem_get_inst(mod_addr)) { +		case MODA: +			regs[ridx] = &g_procs[pidx].rax; +			break; +		case MODB: +			regs[ridx] = &g_procs[pidx].rbx; +			break; +		case MODC: +			regs[ridx] = &g_procs[pidx].rcx; +			break; +		case MODD: +			regs[ridx] = &g_procs[pidx].rdx; +			break; +		} +	} + +	return TRUE; +} + +static void addr(uint32 pidx) +{ +	/* This gets called when an organism has finally found a template and is +	ready to store its address. Only when in debug mode, we make sure that the +	entire search operation has been performed in a valid way. +	*/ +	uint32_p reg; + +	#ifndef NDEBUG +		uint32 next2_addr; +		uint8 next2_inst; +		uint8 sp_inst; +		assert(g_is_init); +		assert(pidx < g_capacity); +		assert(!sal_proc_is_free(pidx)); +		next2_addr = g_procs[pidx].ip + 2; +		assert(sal_mem_is_address_valid(next2_addr)); +		next2_inst = sal_mem_get_inst(next2_addr); +		sp_inst = sal_mem_get_inst(g_procs[pidx].sp); +		assert(sal_is_template(next2_inst)); +		assert(sal_is_template(sp_inst)); +		assert(are_templates_complements(next2_addr, g_procs[pidx].sp)); +	#endif + +	/* Store address of complement into the given register. +	*/ +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	*reg = g_procs[pidx].sp; +	increment_ip(pidx); +} + +static void free_child_block_of(uint32 pidx) +{ +	/* Free only the 'child' memory block (mb2) of the caller organism. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	assert(g_procs[pidx].mb2s); +	free_memory_block(g_procs[pidx].mb2a, g_procs[pidx].mb2s); +	g_procs[pidx].mb2a = 0; +	g_procs[pidx].mb2s = 0; +} + +static void alloc(uint32 pidx, boolean forward) +{ +	/* Allocate a 'child' memory block of size stored in the first given +	register, and save its address into the second given register. This +	function is the basis of Salisian reproduction. It's a fairly complicated +	function (as the seeker pointer must function in a procedural way), so it's +	divided into a series of steps, documented below. +	*/ +	uint32_p regs[2]; +	uint32 block_size; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	/* For this function to work, we need at least two register modifiers. +	Then, we check for all possible error conditions. If any error conditions +	are found, the instruction faults and returns. +	*/ +	if (!get_register_pointers(pidx, regs, 2)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	block_size = *regs[0]; + +	/* ERROR 1: requested child block is of size zero. +	*/ +	if (!block_size) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	/* ERROR 2: seeker pointer not adjacent to existing child block. +	*/ +	if (g_procs[pidx].mb2s) { +		uint32 exp_addr; + +		if (forward) { +			exp_addr = g_procs[pidx].mb2a + g_procs[pidx].mb2s; +		} else { +			exp_addr = g_procs[pidx].mb2a - 1; +		} + +		if (g_procs[pidx].sp != exp_addr) { +			on_fault(pidx); +			increment_ip(pidx); +			return; +		} +	} + +	/* No errors were detected. We thus handle all correct conditions. +	* CONDITION 1: allocation was successful. +	*/ +	if (g_procs[pidx].mb2s == block_size) { +		increment_ip(pidx); +		*regs[1] = g_procs[pidx].mb2a; +		return; +	} + +	/* CONDITION 2: seeker pointer has collided with allocated space. We free +	child memory block and just continue searching. +	*/ +	if (sal_mem_is_allocated(g_procs[pidx].sp)) { +		if (g_procs[pidx].mb2s) { +			free_child_block_of(pidx); +		} + +		increment_sp(pidx, forward); +		return; +	} + +	/* CONDITION 3: no collision detected; enlarge child memory block and +	increment seeker pointer. Also, correct position of BLOCK_START bit flag. +	*/ +	_sal_mem_set_allocated(g_procs[pidx].sp); + +	if (!g_procs[pidx].mb2s) { +		g_procs[pidx].mb2a = g_procs[pidx].sp; +		_sal_mem_set_block_start(g_procs[pidx].sp); +	} else if (!forward) { +		_sal_mem_unset_block_start(g_procs[pidx].mb2a); +		g_procs[pidx].mb2a = g_procs[pidx].sp; +		_sal_mem_set_block_start(g_procs[pidx].mb2a); +	} + +	g_procs[pidx].mb2s++; +	increment_sp(pidx, forward); +} + +static void swap(uint32 pidx) +{ +	/* Swap parent and child memory blocks. This function is the basis of +	Salisian metabolism. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (g_procs[pidx].mb2s) { +		uint32 addr_temp = g_procs[pidx].mb1a; +		uint32 size_temp = g_procs[pidx].mb1s; +		g_procs[pidx].mb1a = g_procs[pidx].mb2a; +		g_procs[pidx].mb1s = g_procs[pidx].mb2s; +		g_procs[pidx].mb2a = addr_temp; +		g_procs[pidx].mb2s = size_temp; +	} else { +		on_fault(pidx); +	} + +	increment_ip(pidx); +} + +static void split(uint32 pidx) +{ +	/* Split child memory block into a new organism. A new baby is born. :-) +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (g_procs[pidx].mb2s) { +		proc_create( +			g_procs[pidx].mb2a, g_procs[pidx].mb2s, pidx, FALSE, FALSE +		); +		g_procs[pidx].mb2a = 0; +		g_procs[pidx].mb2s = 0; +	} else { +		on_fault(pidx); +	} + +	increment_ip(pidx); +} + +static void one_reg_op(uint32 pidx, uint8 inst) +{ +	/* Here we group all 1-register operations. These include incrementing, +	decrementing, placing zero or one on a register, and the negation +	operation. +	*/ +	uint32_p reg; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	assert(sal_is_inst(inst)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	switch (inst) { +	case INCN: +		(*reg)++; +		break; +	case DECN: +		(*reg)--; +		break; +	case ZERO: +		(*reg) = 0; +		break; +	case UNIT: +		(*reg) = 1; +		break; +	case NOTN: +		(*reg) = !(*reg); +		break; +	default: +		assert(FALSE); +	} + +	increment_ip(pidx); +} + +static void if_not_zero(uint32 pidx) +{ +	/* Conditional operator. Like in most programming languages, this +	instruction is needed to allow organism execution to branch into different +	execution streams. +	*/ +	uint32_p reg; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	if (!(*reg)) { +		increment_ip(pidx); +	} + +	increment_ip(pidx); +	increment_ip(pidx); +} + +static void three_reg_op(uint32 pidx, uint8 inst) +{ +	/* Here we group all 3-register arithmetic operations. These include +	addition, subtraction, multiplication and division. +	*/ +	uint32_p regs[3]; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	assert(sal_is_inst(inst)); + +	if (!get_register_pointers(pidx, regs, 3)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	switch (inst) { +	case SUMN: +		*regs[0] = *regs[1] + *regs[2]; +		break; +	case SUBN: +		*regs[0] = *regs[1] - *regs[2]; +		break; +	case MULN: +		*regs[0] = *regs[1] * *regs[2]; +		break; +	case DIVN: +		/* Division by 0 is not allowed and causes a fault. */ +		if (!(*regs[2])) { +			on_fault(pidx); +			increment_ip(pidx); +			return; +		} + +		*regs[0] = *regs[1] / *regs[2]; +		break; +	default: +		assert(FALSE); +	} + +	increment_ip(pidx); +} + +static void load(uint32 pidx) +{ +	/* Load an instruction from a given address into a specified register. This +	is used by organisms during their reproduction cycle. +	*/ +	uint32_p regs[2]; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if ( +		!get_register_pointers(pidx, regs, 2) || +		!sal_mem_is_address_valid(*regs[0]) +	) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	if (g_procs[pidx].sp < *regs[0]) { +		increment_sp(pidx, TRUE); +	} else if (g_procs[pidx].sp > *regs[0]) { +		increment_sp(pidx, FALSE); +	} else { +		*regs[1] = sal_mem_get_inst(*regs[0]); +		increment_ip(pidx); +	} +} + +static boolean is_writeable_by(uint32 pidx, uint32 address) +{ +	/* Check whether an organisms has writing rights on a specified address. +	Any organism may write to any valid address that is either self owned or +	not allocated. +	*/ +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	assert(sal_mem_is_address_valid(address)); + +	if (!sal_mem_is_allocated(address)) { +		return TRUE; +	} else { +		uint32 lo1 = g_procs[pidx].mb1a; +		uint32 lo2 = g_procs[pidx].mb2a; +		uint32 hi1 = lo1 + g_procs[pidx].mb1s; +		uint32 hi2 = lo2 + g_procs[pidx].mb2s; +		return ( +			(address >= lo1 && address < hi1) || +			(address >= lo2 && address < hi2) +		); +	} +} + +static void write(uint32 pidx) +{ +	/* Write instruction on a given register into a specified address. This is +	used by organisms during their reproduction cycle. +	*/ +	uint32_p regs[2]; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if ( +		!get_register_pointers(pidx, regs, 2) || +		!sal_mem_is_address_valid(*regs[0]) || +		!sal_is_inst(*regs[1]) +	) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	if (g_procs[pidx].sp < *regs[0]) { +		increment_sp(pidx, TRUE); +	} else if (g_procs[pidx].sp > *regs[0]) { +		increment_sp(pidx, FALSE); +	} else if (is_writeable_by(pidx, *regs[0])) { +		sal_mem_set_inst(*regs[0], *regs[1]); +		increment_ip(pidx); +	} else { +		on_fault(pidx); +		increment_ip(pidx); +	} +} + +static void send(uint32 pidx) +{ +	/* Send instruction on given register into the common pipe. +	*/ +	uint32_p reg; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	if (!sal_is_inst(*reg)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	_sal_comm_send((uint8)(*reg)); +	increment_ip(pidx); +} + +static void receive(uint32 pidx) +{ +	/* Receive a single instruction from the common pipe and store it into a +	specified register. In case the common pipe is empty, it will return the +	NOP0 instruction. +	*/ +	uint32_p reg; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	*reg = _sal_comm_receive(); +	assert(sal_is_inst(*reg)); +	increment_ip(pidx); +} + +static void push(uint32 pidx) +{ +	/* Push value on register into the stack. This is useful as a secondary +	memory resource. +	*/ +	uint32_p reg; +	uint32 sidx; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	for (sidx = 7; sidx; sidx--) { +		g_procs[pidx].stack[sidx] = g_procs[pidx].stack[sidx - 1]; +	} + +	g_procs[pidx].stack[0] = *reg; +	increment_ip(pidx); +} + +static void +pop(uint32 pidx) +{ +	/* Pop value from the stack into a given register. +	*/ +	uint32_p reg; +	uint32 sidx; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	if (!get_register_pointers(pidx, ®, 1)) { +		on_fault(pidx); +		increment_ip(pidx); +		return; +	} + +	*reg = g_procs[pidx].stack[0]; + +	for (sidx = 1; sidx < 8; sidx++) { +		g_procs[pidx].stack[sidx - 1] = g_procs[pidx].stack[sidx]; +	} + +	g_procs[pidx].stack[7] = 0; +	increment_ip(pidx); +} + +static boolean eat_seek(uint32 pidx, boolean forward) +{ +	/* Search (via the seeker pointer) for an identical copy of the memory +	stream right in front of the calling organism's IP. This function gets +	called by organisms each cycle during an EAT instruction. Only when a valid +	copy is found, this function will return TRUE. */ +	uint32 next_addr; +	uint8 next_inst; +	uint8 sp_inst; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	next_addr = g_procs[pidx].ip + 1; + +	if (!sal_mem_is_address_valid(next_addr)) { +		on_fault(pidx); +		increment_ip(pidx); +		return FALSE; +	} + +	if (g_procs[pidx].sp == next_addr) { +		increment_sp(pidx, forward); +		return FALSE; +	} + +	next_inst = sal_mem_get_inst(next_addr); +	sp_inst = sal_mem_get_inst(g_procs[pidx].sp); + +	if (next_inst == sp_inst) { +		return TRUE; +	} + +	increment_sp(pidx, forward); +	return FALSE; +} + +static void eat(uint32 pidx) +{ +	/* Salisian organisms may 'eat' information. They eat by searching for +	'copies' of the code in front of their IPs during the EAT instruction. When +	a valid copy is found, an organism gets rewarded by setting their 'reward' +	field to the length of the measured copy. Each cycle, organisms execute +	'reward' number of instructions plus one, thus, eating a larger stream +	produces a larger advantage for an organism. + +	However, whenever an organism eats, the detected copy of the source code +	gets destroyed (randomized). The main idea of the EAT instruction is to +	turn 'information' into a valuable resource in Salis. +	*/ +	uint32 source; +	uint32 target; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); +	source = g_procs[pidx].ip + 1; +	target = g_procs[pidx].sp; +	assert(sal_mem_is_address_valid(source)); +	assert(sal_mem_get_inst(source) == sal_mem_get_inst(target)); +	g_procs[pidx].reward = 0; + +	while ( +		sal_mem_is_address_valid(source) && +		sal_mem_is_address_valid(target) && +		sal_mem_get_inst(source) == sal_mem_get_inst(target) +	) { +		g_procs[pidx].reward++; +		_sal_evo_randomize_at(target); +		source++; +		target++; +	} + +	increment_ip(pidx); +} + +static void proc_cycle(uint32 pidx) +{ +	/* Cycle a process once. During each process cycle, several things may +	happen. For example, if a process is being punished (for committing a +	fault), it will have to wait until the next simulation cycle to be able to +	execute. + +	Non-punished organisms execute at least one instruction per simulation +	cycle. If they are being rewarded, they execute one, plus the number on +	their 'reward' field, number of instructions each cycle. +	*/ +	uint32 cycles; +	assert(g_is_init); +	assert(pidx < g_capacity); +	assert(!sal_proc_is_free(pidx)); + +	/* Organism is being punished. Clear its 'punish' field and return without +	executing. +	*/ +	if (g_procs[pidx].punish) { +		g_procs[pidx].punish = 0; +		return; +	} + +	/* Execute one instruction per number of 'reward' points awarded to this +	organism. Switch case associates each instruction to its corresponding +	instruction handler. Process module keeps track of the total number of +	instructions executed (by all organisms) per simulation cycle. +	*/ +	for (cycles = 0; cycles < g_procs[pidx].reward + 1; cycles++) { +		uint8 inst = sal_mem_get_inst(g_procs[pidx].ip); +		g_instructions_executed++; + +		switch (inst) { +		case JMPB: +			if (jump_seek(pidx, FALSE)) jump(pidx); +			break; +		case JMPF: +			if (jump_seek(pidx, TRUE)) jump(pidx); +			break; +		case ADRB: +			if (addr_seek(pidx, FALSE)) addr(pidx); +			break; +		case ADRF: +			if (addr_seek(pidx, TRUE)) addr(pidx); +			break; +		case MALB: +			alloc(pidx, FALSE); +			break; +		case MALF: +			alloc(pidx, TRUE); +			break; +		case SWAP: +			swap(pidx); +			break; +		case SPLT: +			split(pidx); +			break; +		case INCN: +		case DECN: +		case ZERO: +		case UNIT: +		case NOTN: +			one_reg_op(pidx, inst); +			break; +		case IFNZ: +			if_not_zero(pidx); +			break; +		case SUMN: +		case SUBN: +		case MULN: +		case DIVN: +			three_reg_op(pidx, inst); +			break; +		case LOAD: +			load(pidx); +			break; +		case WRTE: +			write(pidx); +			break; +		case SEND: +			send(pidx); +			break; +		case RECV: +			receive(pidx); +			break; +		case PSHN: +			push(pidx); +			break; +		case POPN: +			pop(pidx); +			break; +		case EATB: +			if (eat_seek(pidx, FALSE)) eat(pidx); +			break; +		case EATF: +			if (eat_seek(pidx, TRUE)) eat(pidx); +			break; +		default: +			increment_ip(pidx); +		} +	} +} + +void _sal_proc_cycle(void) +{ +	/* The process module cycle consists of a series of steps, which are needed +	to preserve overall correctness. +	*/ +	assert(g_is_init); +	assert(module_is_valid()); +	g_instructions_executed = 0; + +	/* Iterate through all organisms in the reaper queue. First organism to +	execute is the one pointed to by 'g_last' (the one on top of the queue). +	Last one to execute is 'g_first'. We go around the circular queue, making +	sure to modulo (%) around when iterator goes below zero. +	*/ +	if (g_count) { +		uint32 pidx = g_last; + +		/* Turn off all IP flags in memory and cycle 'g_last'. Then, continue +		with all other organisms until we reach 'g_first'. +		*/ +		toggle_ip_flag(_sal_mem_unset_ip); +		assert(!sal_mem_get_ip_count()); +		proc_cycle(pidx); + +		while (pidx != g_first) { +			pidx--; +			pidx %= g_capacity; +			proc_cycle(pidx); +		} + +		/* Kill oldest processes whenever memory gets filled over capacity. +		*/ +		while (sal_mem_get_allocated_count() > sal_mem_get_capacity()) { +			proc_kill(FALSE); +		} + +		/* Finally, turn IP flags back on. Keep in mind that IP flags exist +		for visualization purposes only. They are actually not really needed. +		*/ +		toggle_ip_flag(_sal_mem_set_ip); +	} +} diff --git a/src/salis.c b/src/salis.c new file mode 100644 index 0000000..1aae1fa --- /dev/null +++ b/src/salis.c @@ -0,0 +1,109 @@ +#include <assert.h> +#include <stdio.h> +#include "getter.h" +#include "salis.h" + +static boolean g_is_init; +static uint32 g_cycle; +static uint32 g_epoch; + +void sal_main_init(uint32 order, string pipe) +{ +	/* Initialize all Salis modules to their initial states. We pass along any +	arguments to their respective modules. +	*/ +	assert(!g_is_init); +	_sal_mem_init(order); +	_sal_comm_init(pipe); +	_sal_evo_init(); +	_sal_proc_init(); +	g_is_init = TRUE; +} + +void sal_main_quit(void) +{ +	/* Reset Salis and all of its modules back to zero. We may, thus, shutdown +	Salis and re-initialize it with different parameters without having to +	reload the library (useful, for example, when running data gathering +	scripts that must iterate through many save files). +	*/ +	assert(g_is_init); +	_sal_proc_quit(); +	_sal_evo_quit(); +	_sal_comm_quit(); +	_sal_mem_quit(); +	g_is_init = FALSE; +	g_cycle = 0; +	g_epoch = 0; +} + +void sal_main_load(string file_name, string pipe) +{ +	/* Load simulation state from file. This file must have been created by +	'sal_main_save()'. File name of common pipe must also be provided. +	*/ +	FILE *file; +	assert(!g_is_init); +	assert(file_name); +	file = fopen(file_name, "rb"); +	assert(file); +	fread(&g_is_init, sizeof(boolean), 1, file); +	fread(&g_cycle, sizeof(uint32), 1, file); +	fread(&g_epoch, sizeof(uint32), 1, file); +	_sal_mem_load_from(file); +	_sal_evo_load_from(file); +	_sal_proc_load_from(file); +	fclose(file); +	_sal_comm_init(pipe); +} + +void sal_main_save(string file_name) +{ +	/* Save simulation state to a file. This file may later be re-loaded with +	'sal_main_load()'. We save in binary format (to save space), which means +	save files might not be entirely portable. +	*/ +	FILE *file; +	assert(g_is_init); +	assert(file_name); +	file = fopen(file_name, "wb"); +	assert(file); +	fwrite(&g_is_init, sizeof(boolean), 1, file); +	fwrite(&g_cycle, sizeof(uint32), 1, file); +	fwrite(&g_epoch, sizeof(uint32), 1, file); +	_sal_mem_save_into(file); +	_sal_evo_save_into(file); +	_sal_proc_save_into(file); +	fclose(file); +} + +boolean sal_main_is_init(void) +{ +	/* Check if Salis is currently initialized/running. +	*/ +	return g_is_init; +} + +/* Getter methods for the Salis main module. +*/ +UINT32_GETTER(main, cycle) +UINT32_GETTER(main, epoch) + +void sal_main_cycle(void) +{ +	/* Cycle the Salis simulator once. The combination of a cycle * epoch +	counter allows us to track simulations for an insane period of time +	(2^64 cycles). +	*/ +	g_cycle++; + +	if (!g_cycle) { +		g_epoch++; +	} + +	/* Cycle all of the Salis modules. +	*/ +	_sal_mem_cycle(); +	_sal_evo_cycle(); +	_sal_proc_cycle(); +} | 
