1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitNamespaces #-}
{-# LANGUAGE ImportQualifiedPost #-}
import Data.Kind (Type)
import Data.Proxy (Proxy (Proxy))
import Data.Vector (Vector, cons, empty, ifilter, unsafeIndex, (//))
import Fcf qualified as F
import Fcf.Data.List qualified as F (Cons)
import Fcf.Data.Nat qualified as F (Nat)
import GHC.OverloadedLabels (IsLabel, fromLabel)
import GHC.TypeLits (KnownNat, Symbol, natVal)
import Unsafe.Coerce (unsafeCoerce)
data Any (f :: k -> Type) where
Any :: f t -> Any f
data OpenProduct (f :: k -> Type) (ts :: [(Symbol, k)]) where
OpenProduct :: Vector (Any f) -> OpenProduct f ts
type UniqueKey (key :: k) (ts :: [(k, t)]) =
F.Null F.=<< F.Filter (F.TyEq key F.<=< F.Fst) ts
type FindIndex (key :: Symbol) (ts :: [(Symbol, k)]) =
F.FindIndex (F.TyEq key F.<=< F.Fst) ts
type FindElem (key :: Symbol) (ts :: [(Symbol, k)]) =
F.Eval (F.FromMaybe F.Stuck F.=<< FindIndex key ts)
type LookupType (key :: k) (ts :: [(k, t)]) =
F.FromMaybe F.Stuck F.=<< F.Lookup key ts
type UpdateElem (key :: Symbol) (t :: k) (ts :: [(Symbol, k)]) =
F.SetIndex (FindElem key ts) '(key, t) ts
type DeleteElem (key :: Symbol) (ts :: [(Symbol, k)]) =
F.Filter (F.Not F.<=< F.TyEq key F.<=< F.Fst) ts
type UpsertElem (key :: Symbol) (t :: k) (ts :: [(Symbol, k)]) =
F.UnMaybe
(F.Cons '(key, t) ts)
(F.ConstFn (F.Eval (UpdateElem key t ts)))
F.=<< FindIndex key ts
data Key (key :: Symbol) = Key
instance key ~ key' => IsLabel key (Key key') where
fromLabel = Key
class MaybeIndex (m :: Maybe F.Nat) where
maybeIndex :: Maybe Int
instance MaybeIndex 'Nothing where
maybeIndex = Nothing
instance KnownNat a => MaybeIndex ('Just a) where
maybeIndex = Just $ fromIntegral $ natVal $ Proxy @a
nil :: OpenProduct f '[]
nil = OpenProduct empty
insert
:: F.Eval (UniqueKey key ts) ~ 'True
=> Key key
-> f t
-> OpenProduct f ts
-> OpenProduct f ('(key, t) ': ts)
insert _ ft (OpenProduct v) = OpenProduct $ cons (Any ft) v
findElem
:: forall key ts
. KnownNat (FindElem key ts)
=> Int
findElem = fromIntegral $ natVal $ Proxy @(FindElem key ts)
get
:: forall key ts f
. KnownNat (FindElem key ts)
=> Key key
-> OpenProduct f ts
-> f (F.Eval (LookupType key ts))
get _ (OpenProduct v) = unAny $ unsafeIndex v $ findElem @key @ts
where
unAny (Any a) = unsafeCoerce a
update
:: forall key ts t f
. KnownNat (FindElem key ts)
=> Key key
-> f t
-> OpenProduct f ts
-> OpenProduct f (F.Eval (UpdateElem key t ts))
update _ ft (OpenProduct v) = OpenProduct $ v // [(findElem @key @ts, Any ft)]
-- Exercise 11.3-i
-- Implement `delete` for `OpenProduct`s.
-- This one works identically to Sandy's version:
delete
:: forall key ts f
. KnownNat (FindElem key ts)
=> Key key
-> OpenProduct f ts
-> OpenProduct f (F.Eval (DeleteElem key ts))
delete _ (OpenProduct v) = OpenProduct $ flip ifilter v $ curry $ (findElem @key @ts ==) . fst
-- Exercise 11.3-ii
-- Implement `upsert` for `OpenProduct`s.
-- I came up with slightly different (but equivalent) helper data-types and
-- type families (see above).
upsert
:: forall key ts t f
. MaybeIndex (F.Eval (FindIndex key ts))
=> Key key
-> f t
-> OpenProduct f ts
-> OpenProduct f (F.Eval (UpsertElem key t ts))
upsert _ ft (OpenProduct v) =
case maybeIndex @(F.Eval (FindIndex key ts)) of
Nothing -> OpenProduct $ cons (Any ft) v
Just i -> OpenProduct $ v // [(i, Any ft)]
|